Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Two UT Southwestern Scientists Honored as Rising Stars in Texas Research

Published: Thursday, December 13, 2012
Last Updated: Wednesday, December 12, 2012
Bookmark and Share
Dr. Lora Hooper and Dr. Youxing Jiang are among the four chosen for the 2013 Edith and Peter O’Donnell Awards.

The Academy of Medicine, Engineering, and Science of Texas (TAMEST) has announced that two UT Southwestern Medical Center researchers are among the four chosen for the 2013 Edith and Peter O’Donnell Awards.

Dr. Lora Hooper, associate professor of immunology and microbiology, and Dr. Youxing Jiang, professor of physiology, will be honored at a banquet at the Westin Galleria in Dallas on Jan. 17 in conjunction with TAMEST’s 10th annual conference.

Both are accomplished Howard Hughes Medical Institute investigators, and Dr. Hooper also has an appointment in UT Southwestern’s Cancer Immunobiology Center.

Each year, the awards honor outstanding achievements by early-career investigators in science, medicine, engineering, and technology innovation. Each award consists of a $25,000 honorarium, a citation, a trophy, and an invitation to speak at the conference.

The 2013 O’Donnell Award in Medicine honors Dr. Hooper for her discovery of immune mechanisms that promote host-bacterial interactions.

These discoveries in part explain how beneficial bacteria can safely exist in the intestinal tract and may ultimately reveal what to do when illness-causing bacteria predominate.

The 2013 O’Donnell Award in Science recognizes Dr. Jiang’s efforts to elucidate the atomic structures of membrane-bound ion channels, which are cell surface proteins that allow specific charged particles like sodium and potassium ions to pass through or be blocked by cell membranes.

“The achievements of Dr. Hooper and Dr. Jiang exemplify the breadth of research under way at UT Southwestern, important work with benefits we hope will extend across the state of Texas and throughout the world of medical science,” said Dr. Daniel K. Podolsky, president of UT Southwestern.

Dr. Podolsky continued, “We are grateful to Edith and Peter O’Donnell for their support of scientific advancement.”

Ion channels are so fundamental to human existence that problems in these proteins are blamed for a range of conditions called channelopathies, which include some forms of epilepsy, migraine, fibromyalgia and paralysis.

Solving the atomic structure of ion channels, a very high-tech way of visualizing them at the atomic level, is a major step toward understanding and better treating these conditions, Dr. Jiang explained.

“I am deeply honored,” said Dr. Jiang. “This award recognizes the hard work of many outstanding scientists in my lab. I am also grateful for the incredible support that the physiology department and the university have provided to us.”

Much of Dr. Hooper’s research focuses on the battles that take place, or don’t, in a sort of “demilitarized zone” in the intestine. That zone is a 50-micron-wide area - about half the width of a human hair - between the intestinal wall and the normally good, or commensal, bacteria that live in the gut.

Under normal conditions, these bacteria aid in digestion and the delivery of nutrients from the food we eat without damaging the delicate intestinal lining. When something goes wrong with this arrangement the bacteria are able to invade the intestinal wall and can cause inflammatory bowel disorders.

“It is a tremendous honor to receive this award, which is a reflection of the contributions of many excellent students and colleagues that I've worked with in my lab, as well as the collaborative environment and standard of scientific excellence at UT Southwestern," Dr. Hooper said.

Last fall, Dr. Hooper published a study in the journal Science showing for the first time how a protein that her laboratory discovered in 2006 works to police the intestinal demilitarized zone and keep bacteria from damaging the intestinal lining.

Most recently, in a study published in the Proceedings of the National Academy of Sciences in October, her laboratory found that gut bacteria launch biological warfare against other bacterial species in response to environmental stress, such as changes in available nutrients or the presence of antibiotics.

The bacteria go to war by churning out viruses that attack other bacterial species. The scientists hope to harness this intestinal warfare to develop ways to fight antibiotic-resistant bacterial infections.

Other 2013 O’Donnell Award winners are Dr. Li Shi of UT-Austin for engineering and Dr. Timothy Nedwed of ExxonMobil Upstream Research Company for technology innovation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Tuesday, September 27, 2016
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Wednesday, September 21, 2016
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Wednesday, September 21, 2016
Scientists Enhance Ability of Antibiotics to Defeat Resistant Types of Bacteria
Researchers at UTSW have reported successful use of a synthetic molecule to enhance antibiotic effectiveness against certain pathogens.
Saturday, September 17, 2016
Researchers Identify Method of Creating Long-Lasting Memories
Researchers at UTSW have found that the attention-grabbing experiences trigger the release of memory-enhancing chemicals to help etch memories into the brain.
Thursday, September 08, 2016
Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Tuesday, August 23, 2016
Signaling Molecule Regulates Release of the Hunger Hormone Ghrelin
Researchers at UT Southwestern have identified that the blocking release of the hormone ghrelin may mediate low blood sugar effect in children taking beta blockers.
Tuesday, August 23, 2016
PARP Proteins Explore Therapeutic Targets in Cancer
Researchers at UTSW have identified a previously unknown role of a certain class of proteins that opens the door to explore therapeutic targets in cancer and other disease.
Tuesday, August 16, 2016
Innate Immunity Connection to Rare Childhood Disease
Researchers have discovered a gene that's linked to a rare, fatal syndrome in children has an important innate immunity role.
Thursday, August 04, 2016
UT Southwestern Targets Rising Rates of Kidney Cancer
Company has received $11 million in funding to the rising threat of kidney cancer.
Wednesday, August 03, 2016
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
Friday, July 22, 2016
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Friday, July 22, 2016
New Mechanism of Tuberculosis Infection
Researchers have identified a new infection mechanism of tuberculosis that could lead to a new therapeutic angle.
Friday, July 22, 2016
New Method Detects Telomere Length for Research into Cancer, Aging
UT Southwestern Medical Center cell biologists have identified a new method for determining the length of telomeres, the endcaps of chromosomes, which can influence cancer progression and aging.
Friday, July 01, 2016
3-D Atomic Structure of Cholesterol Transporter
Researchers at UTSW have determined the 3-D atomic structure of a human sterol transporter that helps maintain cholesterol balance.
Tuesday, May 31, 2016
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
CES Score May Predict Response to Cancer Treatment
Researchers identify new type of biomarker that helps predict prognosis and response to several types of cancer treatment.
Uncovering Cancer’s ‘Invisibility Cloak’
Researchers discover cancer cell mechanism to become invisible to the body's immune system.
Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
Treating Sepsis with Marine Mitochondria
Mitochondrial alternative oxidase from a marine animal combats bacterial sepsis.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!