Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Prostate Cancer Now Detectable Using Imaging-Guided Biopsy

Published: Thursday, December 13, 2012
Last Updated: Thursday, December 13, 2012
Bookmark and Share
Groundbreaking research by a team of UCLA physicians and engineers demonstrates that prostate cancer can be diagnosed far more easily and accurately using a new image-guided, targeted biopsy procedure.

Traditionally, prostate tumors have been found through so-called blind biopsies, in which tissue samples are taken systematically from the entire prostate in the hopes of locating a piece of tumor — a technique that dates back to the 1980s. But the cancer now appears detectable by direct sampling of tumor spots found using magnetic resonance imaging, or MRI, in combination with real-time ultrasound, the researchers say.
The findings are published Dec. 10 in the early online edition of the Journal of Urology and are scheduled for print publication in the journal's January issue.
The UCLA study indicates that the MRI–ultrasound fusion biopsy, which is much more accurate than a conventional blind biopsy, may lead to a reduction in the number of prostate biopsies performed and could allow for the early detection of serious prostate cancers.
The study involved 171 men who were either undergoing active surveillance to monitor slow-growing prostate cancers or who, despite prior negative biopsies, had persistently elevated levels of prostate-specific antigen (PSA), a protein produced by the prostate that can indicate the presence of cancer . The UCLA biopsies using the new technique were done in about 20 minutes in an outpatient clinic setting under local anesthesia.
Nearly all of the 1 million prostate biopsies performed annually in the U.S. are triggered by elevations in PSA levels, and about 240,000 new cases of prostate cancer are discovered each year. Thus, about 75 percent of biopsies are negative for cancer. However, many men with negative biopsies but elevated PSA levels may still harbor malignant tumors — tumors missed by conventional biopsies, said the study's senior author, Dr. Leonard S. Marks, a professor of urology and director of UCLA's active surveillance program.
"Early prostate cancer is difficult to image because of the limited contrast between normal and malignant tissues within the prostate," Marks said. "Conventional biopsies are basically performed blindly because we can't see what we're aiming for. Now, with this new method, which fuses MRI and ultrasound, we have the potential to see the prostate cancer and aim for it in a much more refined and rational manner."
The new targeting process is the result of four years of work funded by the National Cancer Institute and based at the Clark Urology Center at UCLA.
Since the mid-1980s, prostate cancer has been diagnosed using trans-rectal ultrasound to sample the prostate. Unlike most other cancers, prostate cancer is the only major malignancy diagnosed without actually visualizing the tumor as a biopsy is done, Marks said.
With the advent of sophisticated MRI, the ability to image the prostate improved and provided a picture of tumors within the organ. However, attempting to biopsy the prostate with the patient inside an MRI machine proved to be cumbersome, expensive and time-consuming. But with the development of the new MRI–ultrasound fusion process, the biopsy can now be performed in a clinic setting.
In the study, the volunteers first underwent MRI to visualize the prostate and any lesions. That information was then fed into a device called the Artemis, which electronically fuses the MRI pictures with real-time, three-dimensional ultrasound, allowing the urologist to see the lesion during the biopsy.
"With the Artemis, we have a virtual map of the suspicious areas placed directly onto the ultrasound image during the biopsy," Marks said. "When you can see a lesion, you've got a major advantage of knowing what's really going on in the prostate. The results have been very dramatic, and the rate of cancer detection in these targeted biopsies is very high. We're finding a lot of tumors that hadn't been found before using conventional biopsies."
Prostate cancer was found in 53 percent of 171 study volunteers. Of those tumors found using the fusion biopsy technique, 38 percent had a Gleason score of greater than seven, indicating an aggressive tumor and one more likely to spread than a tumor with lower scores. Once prostate cancer spreads, it's much more difficult to treat, and survival decreases.
Robert Meier, a 58-year-old high school art teacher from Visalia, Calif., enrolled in Marks' study after three of his prostate biopsies came back negative for cancer despite his climbing PSA levels.
In 2008, Meier tore his rotator cuff, and as part of his pre-surgery exam, blood tests were done. His PSA was at six — four or lower is considered normal. His doctor sent him to an urologist, who performed tests to rule out everything else that could be causing high PSA levels, including infection and an enlarged prostate. The doctor found nothing. Meanwhile Meier's PSA climbed to eight.
A biopsy was performed and was negative. Meier's PSA jumped to nine, and yet another biopsy came back negative. When his PSA reached 11.7, another round of biopsies was ordered.
"These biopsies can be extremely painful and I was put in the hospital several times so they could be done under general anesthesia," Meier said. "It takes about a month to recover."
Like his PSA levels, Meier's anxiety was also rising. If he didn't have prostate cancer, why were his levels going up?
After a second opinion in Santa Barbara and months of being tested and treated with a medicine designed to shrink his prostate and lower his PSA, Meier was referred to UCLA and Marks in 2011. By then, his PSA was nearly 18, up more than 10 points in three years. An MRI ultimately revealed a prostate lesion, and he underwent a biopsy using the Artemis device. He did have cancer, and it was aggressive.
"Dr. Marks told me that I had a cancer that could spread and it needed to come out now," Meier said. "He told me that at my relatively young age and the severity of the tumor, I had no choice."
Meier's prostate and 24 nearby lymph nodes were removed robotically at UCLA in February by Dr. Arnold Chin, an assistant professor of urology. Follow-up tests show that Meier is cancer free today.
"This program works," Meier said. "I had jumped through all these hoops and had all these tests with two different doctors and they found nothing. It took UCLA to determine that I had an aggressive cancer that could have killed me. I feel like I was in very good hands at UCLA."
The UCLA study team included doctor–scientists from urology, radiology, pathology, the Center for Advanced Surgical and Interventional Technology (CASIT) and biomedical engineering.
"Prostate lesions identified on MRI can be accurately targeted with MR-Ultrasound fusion biopsy in a clinic setting using local anesthesia," the study states. "Biopsy findings correlate with the level of suspicion on MRI. Targeted prostate biopsy has the potential to improve the diagnosis of prostate cancer and may aid in the selection of patients for active surveillance and focal therapy."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Influenza A Viruses More Likely To Emerge In East Asia Than North America
Novel strains of influenza A are more likely to emerge in East Asia than in North America, according to a global analysis by the One Health Institute at the UC Davis School of Veterinary Medicine and EcoHealth Alliance.
Wednesday, September 30, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Crunching Numbers to Combat Cancer
UCSF receives $5 million to integrate data from cancer research models.
Wednesday, September 16, 2015
Virus In Cattle Linked To Human Breast Cancer
A new study by UC Berkeley researchers establishes for the first time a link between infection with the bovine leukemia virus and human breast cancer.
Wednesday, September 16, 2015
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Tuesday, July 21, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Tuesday, June 23, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Scientific News
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Michigan Researchers Use Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos