Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Prostate Cancer Now Detectable Using Imaging-Guided Biopsy

Published: Thursday, December 13, 2012
Last Updated: Thursday, December 13, 2012
Bookmark and Share
Groundbreaking research by a team of UCLA physicians and engineers demonstrates that prostate cancer can be diagnosed far more easily and accurately using a new image-guided, targeted biopsy procedure.

Traditionally, prostate tumors have been found through so-called blind biopsies, in which tissue samples are taken systematically from the entire prostate in the hopes of locating a piece of tumor — a technique that dates back to the 1980s. But the cancer now appears detectable by direct sampling of tumor spots found using magnetic resonance imaging, or MRI, in combination with real-time ultrasound, the researchers say.
The findings are published Dec. 10 in the early online edition of the Journal of Urology and are scheduled for print publication in the journal's January issue.
The UCLA study indicates that the MRI–ultrasound fusion biopsy, which is much more accurate than a conventional blind biopsy, may lead to a reduction in the number of prostate biopsies performed and could allow for the early detection of serious prostate cancers.
The study involved 171 men who were either undergoing active surveillance to monitor slow-growing prostate cancers or who, despite prior negative biopsies, had persistently elevated levels of prostate-specific antigen (PSA), a protein produced by the prostate that can indicate the presence of cancer . The UCLA biopsies using the new technique were done in about 20 minutes in an outpatient clinic setting under local anesthesia.
Nearly all of the 1 million prostate biopsies performed annually in the U.S. are triggered by elevations in PSA levels, and about 240,000 new cases of prostate cancer are discovered each year. Thus, about 75 percent of biopsies are negative for cancer. However, many men with negative biopsies but elevated PSA levels may still harbor malignant tumors — tumors missed by conventional biopsies, said the study's senior author, Dr. Leonard S. Marks, a professor of urology and director of UCLA's active surveillance program.
"Early prostate cancer is difficult to image because of the limited contrast between normal and malignant tissues within the prostate," Marks said. "Conventional biopsies are basically performed blindly because we can't see what we're aiming for. Now, with this new method, which fuses MRI and ultrasound, we have the potential to see the prostate cancer and aim for it in a much more refined and rational manner."
The new targeting process is the result of four years of work funded by the National Cancer Institute and based at the Clark Urology Center at UCLA.
Since the mid-1980s, prostate cancer has been diagnosed using trans-rectal ultrasound to sample the prostate. Unlike most other cancers, prostate cancer is the only major malignancy diagnosed without actually visualizing the tumor as a biopsy is done, Marks said.
With the advent of sophisticated MRI, the ability to image the prostate improved and provided a picture of tumors within the organ. However, attempting to biopsy the prostate with the patient inside an MRI machine proved to be cumbersome, expensive and time-consuming. But with the development of the new MRI–ultrasound fusion process, the biopsy can now be performed in a clinic setting.
In the study, the volunteers first underwent MRI to visualize the prostate and any lesions. That information was then fed into a device called the Artemis, which electronically fuses the MRI pictures with real-time, three-dimensional ultrasound, allowing the urologist to see the lesion during the biopsy.
"With the Artemis, we have a virtual map of the suspicious areas placed directly onto the ultrasound image during the biopsy," Marks said. "When you can see a lesion, you've got a major advantage of knowing what's really going on in the prostate. The results have been very dramatic, and the rate of cancer detection in these targeted biopsies is very high. We're finding a lot of tumors that hadn't been found before using conventional biopsies."
Prostate cancer was found in 53 percent of 171 study volunteers. Of those tumors found using the fusion biopsy technique, 38 percent had a Gleason score of greater than seven, indicating an aggressive tumor and one more likely to spread than a tumor with lower scores. Once prostate cancer spreads, it's much more difficult to treat, and survival decreases.
Robert Meier, a 58-year-old high school art teacher from Visalia, Calif., enrolled in Marks' study after three of his prostate biopsies came back negative for cancer despite his climbing PSA levels.
In 2008, Meier tore his rotator cuff, and as part of his pre-surgery exam, blood tests were done. His PSA was at six — four or lower is considered normal. His doctor sent him to an urologist, who performed tests to rule out everything else that could be causing high PSA levels, including infection and an enlarged prostate. The doctor found nothing. Meanwhile Meier's PSA climbed to eight.
A biopsy was performed and was negative. Meier's PSA jumped to nine, and yet another biopsy came back negative. When his PSA reached 11.7, another round of biopsies was ordered.
"These biopsies can be extremely painful and I was put in the hospital several times so they could be done under general anesthesia," Meier said. "It takes about a month to recover."
Like his PSA levels, Meier's anxiety was also rising. If he didn't have prostate cancer, why were his levels going up?
After a second opinion in Santa Barbara and months of being tested and treated with a medicine designed to shrink his prostate and lower his PSA, Meier was referred to UCLA and Marks in 2011. By then, his PSA was nearly 18, up more than 10 points in three years. An MRI ultimately revealed a prostate lesion, and he underwent a biopsy using the Artemis device. He did have cancer, and it was aggressive.
"Dr. Marks told me that I had a cancer that could spread and it needed to come out now," Meier said. "He told me that at my relatively young age and the severity of the tumor, I had no choice."
Meier's prostate and 24 nearby lymph nodes were removed robotically at UCLA in February by Dr. Arnold Chin, an assistant professor of urology. Follow-up tests show that Meier is cancer free today.
"This program works," Meier said. "I had jumped through all these hoops and had all these tests with two different doctors and they found nothing. It took UCLA to determine that I had an aggressive cancer that could have killed me. I feel like I was in very good hands at UCLA."
The UCLA study team included doctor–scientists from urology, radiology, pathology, the Center for Advanced Surgical and Interventional Technology (CASIT) and biomedical engineering.
"Prostate lesions identified on MRI can be accurately targeted with MR-Ultrasound fusion biopsy in a clinic setting using local anesthesia," the study states. "Biopsy findings correlate with the level of suspicion on MRI. Targeted prostate biopsy has the potential to improve the diagnosis of prostate cancer and may aid in the selection of patients for active surveillance and focal therapy."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Some 3-D Printed Objects Are Toxic
Researchers at the University of California, Riverside have found parts produced by some commercial 3-D printers are toxic to certain fish embryos.
Monday, November 09, 2015
Artificial Kidney Research Gets A Boost
Development of a surgically implantable, artificial kidney — a promising alternative to kidney transplantation or dialysis for people with end-stage kidney disease — has received a $6 million boost.
Monday, November 09, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Sustaining Our Salad
Improving lettuce crops is the aim of a new, $4.5 million grant, awarded to University of California, Davis, researchers by the U.S. Department of Agriculture's National Institute of Food and Agriculture.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Influenza A Viruses More Likely To Emerge In East Asia Than North America
Novel strains of influenza A are more likely to emerge in East Asia than in North America, according to a global analysis by the One Health Institute at the UC Davis School of Veterinary Medicine and EcoHealth Alliance.
Wednesday, September 30, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Crunching Numbers to Combat Cancer
UCSF receives $5 million to integrate data from cancer research models.
Wednesday, September 16, 2015
Virus In Cattle Linked To Human Breast Cancer
A new study by UC Berkeley researchers establishes for the first time a link between infection with the bovine leukemia virus and human breast cancer.
Wednesday, September 16, 2015
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos