Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

New Research Shows use of Human iPSC-Derived Neurons to Model Alzheimer's Disease

Published: Thursday, December 13, 2012
Last Updated: Thursday, December 13, 2012
Bookmark and Share
Neurons also demonstrate potential use in high throughput screening at GlaxoSmithKline.

Cellular Dynamics International (CDI) announced the publication of research demonstrating the use of human iPSC-derived iCell® Neurons to model Alzheimer’s disease (AD) and how they may be used in high throughput drug screening. This research was performed by the lab of Zhong Zhong, Ph.D., head of discovery in the regenerative medicine group within GlaxoSmithKline (GSK), and recently published online in Stem Cell Research.
The GSK researchers used CDI’s commercially available iCell Neurons, comprised of human neurons with characteristic forebrain markers, to model neuronal loss in human AD brains by exposing them to β-amyloid 1-42 (Aβ1-42), a peptide known to be associated with AD. Aβ1-42 builds up in the brains of those susceptible to the disease and acts as a plaque that causes progressive memory loss and cognitive decline. Because iCell Neurons meet tight quality standards and are available commercially in large quantities, the researchers used this AD cellular model to screen hundreds of compounds and ultimately identified several small molecules that inhibited the Aβ1-42 toxicity.

This is the first known use of human iPSCs to model Alzheimer’s disease through Aβ1-42 toxicity in a drug screen and demonstrates the value of commercial-scale quantities of human iPSC-derived cells for use in disease modeling, drug discovery, and target validation.

“Prior to iCell Neurons, the research models available to study AD included mice, human postmortem tissues, and immortalized neuronal cell lines. These models all have severe physiologic and genetic limitations,” said Emile Nuwaysir, chief operating officer of CDI and co-author on the paper.  “To make rapid progress in AD research, it is critical to have a cellular model that accurately recapitulates normal and disease pathology.  We were excited to work with a team as talented as Dr. Zhong’s to perform this study, which demonstrated that when you have a physiologically relevant and reproducible system like iCell Neurons as the basis for your screening platform, you can make rapid and dramatic discoveries.”

Robert Palay, chief executive officer of CDI, added, “CDI’s iCell Neurons exhibit true functional human biology. This study demonstrated the potential of high throughput screening on iCell Neurons in identifying novel therapeutic compounds.  The work contained in this paper is just another example confirming that CDI’s ability to supply our customers with fully functional, standardized human cells enables pharmaceutical scientists to quickly discover new drug candidates, particularly for challenging pathologies such as neurodegenerative diseases.”

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Editing Gene Mutations in Anemia
Researchers successfully use a new gene editing strategy to correct mutations that cause a form of anemia.
Genes Help Track Odd Migrations of Zika Mosquitoes
Study shows that mosquitoes carrying Zika virus or Dengue fever a genetically distinct around the world.
Nanomedicine Aims to Improve HIV Drug Therapies
New research aims to improve the administration and availability of drug therapies to HIV patients using nanotechnology.
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.
Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
Driving Mosquito Evolution to Fight Malaria
Researchers propose insect repellent in conjunction with insecticides to extend current insecticide lifetime.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos