Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Leukemia Treatment Using Child’s Own Re-engineered Immune Cells

Published: Thursday, December 13, 2012
Last Updated: Thursday, December 13, 2012
Bookmark and Share
Engineered immune cells produce complete response in child with an aggressive pediatric leukemia.

By reprogramming a 7-year-old girl’s own immune cells to attack an aggressive form of childhood leukemia, a pediatric oncologist has achieved a complete response in his patient, who faced grim prospects when she relapsed after conventional treatment. The innovative experimental therapy used bioengineered T cells, custom-designed to multiply rapidly in the patient, and then destroy leukemia cells. After the treatment, the child’s doctors found that she had no evidence of cancer.

Pediatric oncologist Stephan A. Grupp, MD, PhD, of The Children’s Hospital of Philadelphia, and colleagues from the University of Pennsylvania presented updated results of the clinical trial involving these engineered cells at the American Society of Hematology (ASH) annual meeting today in Atlanta. Grupp is the director of Translational Research for the Center for Childhood Cancer Research at The Children’s Hospital of Philadelphia, and a professor of Pediatrics at the Perelman School of Medicine at the University of Pennsylvania.

Pediatric research builds on collaboration with Penn scientists developing treatments for adult B-cell leukemias

Grupp’s research builds on his ongoing collaboration with Penn scientists who originally developed the modified T cells as a treatment for B-cell leukemias. The Penn team reported on early results of a trial using this cell therapy in adult chronic lymphocytic leukemia (CLL) patients in August of 2011. Carl H. June, MD, of the Perelman School of Medicine at the University of Pennsylvania, leads this research group, which along with Grupp’s work, is presenting new data at the ASH meeting showing that nine of 12 patients with advanced leukemias in the clinical trial, including two children, responded to treatment with CTL019 cells.

One of the nine responding patients is the 7-year-old with acute lymphoblastic leukemia (ALL). Grupp and Penn colleagues adapted the treatment to combat ALL, the most common childhood leukemia, and also the most common childhood cancer. Although physicians can cure roughly 85 percent of ALL cases, the remaining 15 percent of such cases stubbornly resist treatment.

The CTL019 therapy, formerly called CART19, represents a new approach in cancer treatment. T cells are the workhorses of the immune system, recognizing and attacking invading disease cells. However, cancer cells fly under the radar of immune surveillance, evading detection by T cells. CAR T cells (chimeric antigen receptor T cells) are engineered to specifically target B cells, which become cancerous in certain leukemias, such as ALL and CLL, as well as types of lymphoma, another cancer of the immune cells.

CD19 is a protein found only on the surface of B cells. By creating an antibody that recognizes CD19, and physically connecting that antibody to T cells, the researchers have created a guided missile that locks in on and kills B cells, thereby attacking B-cell leukemia.

In using the CTL019 treatment in his pediatric patient, Grupp found that the very activity that destroyed leukemia cells also stimulated a highly activated immune response called a cytokine release syndrome. The child became very ill and had to be admitted to the intensive care unit.

Grupp and his team decided to counteract these toxic side effects by using 2 immunomodulating drugs that blunted the overactive immune response and rapidly relieved the child’s treatment-related symptoms. These results were effective enough that this approach is now being successfully incorporated into CTL019 treatments for adults as well.

The immunomodulating drugs did not interfere with the CTL019 therapy’s anti-leukemia benefits, which have persisted 6 months after the infusion of cell therapy. This persistence is essential, because the engineered T cells remain in the patient’s body to protect against a recurrence of the cancer.

Future focus on developing more widely available treatments

“These engineered T cells have proven to be active in B cell leukemia in adults,” said Grupp. “We are excited to see that the CTL019 approach may be effective in untreatable cases of pediatric ALL as well. Our hope is that these results will lead to widely available treatments for high-risk B cell leukemia and lymphoma, and perhaps other cancers in the future.”

Timing of experimental therapies for relapsed patients important

“This type of pioneering research addresses the importance of timing when considering experimental therapies for relapsed patients,” added Susan R. Rheingold, MD, one of the leaders in the Children’s Hospital program for children with relapsed leukemia. “To ensure newly relapsed patients with refractory leukemia meet criteria for options like CTL019, we must begin exploring these innovative approaches earlier than ever before. Having the conversation with families earlier provides them more treatment options to offer the best possible outcome.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Therapy for Rare Bleeding Disorder
CHOP researcher leads study of factor VII deficiency in dog model; shows long-term correction, safety and efficacy.
Tuesday, January 26, 2016
Climate Change May Bring More Kidney Stones
CHOP-led research finds link between hotter days, kidney stones in U.S. adults and children.
Friday, July 11, 2014
Large International Study Finds 21 Genes Tied to Cholesterol Levels
In the largest-ever genetic study of cholesterol and other blood lipids, an international consortium has identified 21 new gene variants associated with lipid levels.
Tuesday, October 16, 2012
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
Antibodies To Dengue May Alter Course Of Zika Virus Infection
Scientists at Emory Vaccine Center, in collaboration with investigators from Thailand, have found that people infected with dengue virus develop antibodies that cross-react with Zika virus.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!