Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Penn Researchers Show Cocaine Addiction Resistance May Be Passed Down from Father to Son

Published: Tuesday, December 18, 2012
Last Updated: Tuesday, December 18, 2012
Bookmark and Share
Animal model reveals paternal cocaine use confers protection against rewarding effects of cocaine in male but not female offspring.

New research from the Perelman School of Medicine at the University of Pennsylvania and Massachusetts General Hospital (MGH) reveals that sons of male rats exposed to cocaine are resistant to the rewarding effects of the drug, suggesting that cocaine-induced changes in physiology are passed down from father to son. The findings are published in the latest edition of Nature Neuroscience.

“We know that genetic factors contribute significantly to the risk of cocaine abuse, but the potential role of epigenetic influences, how certain genes related to addiction are expressed, is still relatively unknown,” said senior study author R. Christopher Pierce, PhD, associate professor of Neuroscience in Psychiatry at Penn. “This study is the first to show that the chemical effects of cocaine use can be passed down to future generations to cause a resistance to addictive behavior, indicating that paternal exposure to toxins can have profound effects on gene expression and behavior of their offspring.”

In the current study, the team used an animal model to study inherited effects of cocaine abuse. Male rats self-administered cocaine for 60 days, while controls were administered saline. The male rats were mated with females that had never been exposed to the drug. To eliminate any influence that the males' behavior would have on the pregnant females, they were separated directly after they mated.

The rats’ offspring were monitored to see whether they would begin to self-administer cocaine when it was offered to them. The researchers discovered that male offspring of rats exposed to the drug, but not the female offspring, acquired cocaine self-administration more slowly and had decreased levels of cocaine intake relative to controls. Moreover, control animals were willing to work significantly harder for a single cocaine dose than the offspring of cocaine-addicted rats, suggesting that the rewarding effect of cocaine was decreased.

In collaboration with Ghazaleh Sadri-Vakili, MS, PhD, from MGH, the researchers subsequently examined the animals’ brains and found that male offspring of the cocaine-addicted rats had increased levels of a protein called brain-derived neurotrophic factor (BDNF) in the prefrontal cortex, which is known to blunt the behavioral effects of cocaine.

“We were quite surprised that the male offspring of sires that used cocaine didn't like cocaine as much,” said Pierce. “We identified one change in the brain that appears to underlie this cocaine resistance effect.  But there are undoubtedly other physiological changes as well and we are currently performing more broad experiments to identify them.  We also are eager to perform similar studies with more widely used drugs of abuse such as nicotine and alcohol.”

The findings suggest that cocaine causes epigenetic changes in sperm, thereby reprogramming the information transmitted between generations.  The researchers don’t know exactly why only the male offspring received the cocaine-resistant trait from their fathers, but speculate that sex hormones such as testosterone, estrogen and/or progesterone may play a role.

The first author of the paper, Fair M. Vassoler, PhD, is a recent graduate of the Penn neuroscience graduate group. Other investigators from Penn who contributed to this work include Samantha L. White and Heath D. Schmidt.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Nanoscale ‘Muscles’ Powered by DNA
Scientists have developed nanoscale "muscles" to integrate with custom DNA, that can force the material to bend, curl and flip.
Monday, November 21, 2016
Injectable Biologic Therapy Reduces Triglycerides
Study finds first-of-its-kind therapy promising for patients with high triglycerides, cholesterol.
Wednesday, November 16, 2016
New Mechanism of Plant RNA Degradation Identified
Researchers have identified a novel mechanism by which RNA is degraded.
Thursday, October 20, 2016
Anti-Inflammatory Drugs Could Strengthen Airway Immunity
Mold toxins can weaken the airways' clearing mechanisms and immunity, but PKC inhibitors showed promise as a treatment.
Thursday, September 29, 2016
Drug Target for Raising Social Interaction in Autism Identified
New mouse model has identified a drug target that could increase social interaction for sufferes of ASD.
Tuesday, September 13, 2016
Case for Liquid Biopsies Builds in Advanced Lung Cancer
Study addresses unmet need for better, non-invasive tests called out in recent "Moonshot" blue ribbon panel report
Tuesday, September 13, 2016
Blinding Disease in Canines and Humans Shares Causative Gene, Pathology
Scientists report that they’ve directly compared the disease course between humans and dogs and found remarkable similarities.
Wednesday, August 31, 2016
LncRNAs Maintain Immune Health
Long non-coding RNAs are key controllers for maintaining immune health when fighting infection or preventing inflammatory disorders.
Friday, August 26, 2016
Designing Drug Delivery Nanocarriers
A team of University of Pennsylvania researchers has developed a computer model that will aid in the design of nanocarriers, microscopic structures used to guide drugs to their targets in the body.
Friday, August 05, 2016
A New Therapy for Autoimmune Diseases
Preclinical study from Penn shows that engineered T cells can selectively target the antibody-producing cells that cause autoimmune disease.
Monday, July 04, 2016
New CAR T Cell Therapy Using Double Target Aimed at Solid Tumors
Researchers at Penn University have described how antibody, carbohydrate combination could apply to range of cancer types.
Friday, July 01, 2016
New Therapy Treats Autoimmune Disease Without Harming Normal Immunity
Preclinical study from Penn shows that engineered T cells can selectively target the antibody-producing cells that cause autoimmune disease.
Friday, July 01, 2016
New Antiviral Drugs Could Come from DNA "Scrunching"
University of Pennsylvania scientists show that DNA “scrunching” may be responsible for driving DNA into a virus during replication.
Friday, June 10, 2016
Better Animal Model to Improve HIV Vaccine Development
Penn study identifies a new tool to produce better HIV vaccine designs.
Tuesday, June 07, 2016
Testing Non-Breast/Ovarian Cancer Genes
Researchers have found that expanding gene panel beyond breast/ovarian cancer genes in these patients does not add any clinical benefit. Instead, testing has produced more questions than answers.
Saturday, May 21, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!