Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Rolith Aims to Address the Growing Market for Transparent Electrodes

Published: Friday, December 21, 2012
Last Updated: Thursday, December 20, 2012
Bookmark and Share
University of Michigan Office of Technology Transfer grants Rolith exclusive license to make transparent conductive electrodes.

Rolith, Inc. has announced that it has received an exclusive license to methods of micro and nano-patterning substrates to make transparent conductive electrodes from the University of Michigan Office of Technology Transfer (U-M Tech Transfer).

The licensed process, developed by University of Michigan professor Jay Guo, is based on patterning, which uses continuous optical lithography and offers a low cost, high throughput approach to manufacturing transparent conductive electrodes.

Transparent conductive electrodes are critical to the operation of various optoelectronic devices and are commonly used in high volume applications such as displays, solar cells, "smart" windows and LEDs.

Transparent conductive metal oxides, such as indium tin oxide (ITO) are currently used for this purpose.

However, there is a growing need to replace ITOs with alternative solutions for reasons of cost, availability and performance.

Recent discoveries regarding the optical properties of nanopatterned metals have opened up an important opportunity to develop a new class of transparent electrodes without relying on ITOs.

The nanostructured electrodes technology licensed from U-M Tech Transfer in combination with the existing "Rolling Mask Lithography" capabilities at Rolith offer a convenient and cost effective manufacturing solution to the market.

"We are pleased to be able to partner with Rolith with the license of this exciting technology," says U-M Tech Transfer Executive Director Ken Nisbet. "Partners as Rolith enable our research discoveries to have an impact and fulfill our mission."

"Rolith was fortunate to partner with the University of Michigan and the talented group of scientists headed by Prof. Jay Guo from the early stages of our company growth," said Dr. Boris Kobrin, Founder and CEO of Rolith.

Dr. Kobrin continued, "The recent licensing deal gives us a stronghold position in one of the most demanded applications of our core technology."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Breaking Cell Barriers with Retractable Protein Nanoneedles
Adapting a bacterial structure, institute researchers have developed protein actuators that can mechanically puncture cells.
Gene Signature could Lead to a New Way of Diagnosing Lyme Disease
Lyme disease patients had distinctive gene signatures that persisted for at least three weeks, even after they had taken the antibiotics.
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!