Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Research Pinpoints Key Gene for Regenerating Cells After Heart Attack

Published: Friday, December 21, 2012
Last Updated: Friday, December 21, 2012
Bookmark and Share
UT Southwestern’s cardiologists and molecular biologists found that microRNAs contribute to the heart’s ability to regenerate up to one week after birth.

UT Southwestern Medical Center researchers have pinpointed a molecular mechanism needed to unleash the heart’s ability to regenerate, a critical step toward developing eventual therapies for damage suffered following a heart attack.

Cardiologists and molecular biologists at UT Southwestern, teaming up to study in mice how heart tissue regenerates, found that microRNAs - tiny strands that regulate gene expression - contribute to the heart’s ability to regenerate up to one week after birth.

Soon thereafter the heart loses the ability to regenerate. By determining the fundamental mechanisms that control the heart’s natural regenerative on-off switch, researchers have begun to better understand the No. 1 hurdle in cardiovascular research - the inability of the heart to regenerate following injury.

“For the first time since we began studying how cells respond to a heart attack, we now believe it is possible to activate a program of endogenous regeneration,” said Dr. Hesham Sadek, assistant professor of internal medicine in the division of cardiology, and the senior author of a study in the Proceedings of the National Academy of Sciences.

Each year, nearly 1 million people in the United States have a heart attack, while about 600,000 die of cardiovascular disease annually.

Heart disease is the leading cause of death in both men and women, according to figures from the Centers for Disease Control and Prevention.

As researchers worldwide strive to find ways that help the human heart cope with myriad illnesses and injuries, scientists at UT Southwestern have focused their attention on the heart’s regenerative capabilities.

In 2011, a team led by Dr. Eric Olson, chairman of molecular biology, and Dr. Sadek demonstrated that within three weeks of removing 15 percent of the newborn mouse heart, the organ was able to completely grow back the lost tissue, and as a result looked and functioned normally.

In the latest investigation, UTSW researchers found that hearts of young rodents mounted a robust regenerative response following myocardial infarction, but this restorative activity only occurs during the first week of life.

They then discovered that a microRNA called miR-15 disables the regenerative capacity after one week, but when miR-15 is blocked, the regenerative process can be sustained much longer.

“It is a fresh perspective on an age-old problem,” said Dr. Olson, director of the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer, and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology who is a co-corresponding author of the PNAS study.

Dr. Olson continued, “We’re encouraged by this initial finding because it provides us with a therapeutic opportunity to manipulate the heart’s regenerative potential.”

Further research will be needed to optimize the ways in which medical scientists, and eventually clinicians, may be able to control this regenerative process.

“This may well be the beginning of a new era in heart regeneration biology,” Dr. Sadek said. “Our research provides hope that reawakening the regenerative capacity of adult mammalian hearts is within reach.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

3-D Atomic Structure of Cholesterol Transporter
Researchers at UTSW have determined the 3-D atomic structure of a human sterol transporter that helps maintain cholesterol balance.
Tuesday, May 31, 2016
New $17 Million Cryo-Electron Microscope Center Provides Extraordinary Views
Institute has announced opening of a new $17 million cryo-EM facility housing a unique collection of instruments that researchers can use to view 3-D images of objects.
Thursday, May 12, 2016
New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
Friday, May 06, 2016
Enzyme Link Between Excessive Heart Muscle Growth, Cancer Growth
Researchers at UTSW have found that the drugs currently used to inhibit these enzymes in cancer may also be effective in treating enlargement of the heart muscle.
Saturday, April 16, 2016
Treatment of Common Prostate Cancer
Researchers at UTSW have found that the prostate cancer treatments suppress immune response and may promote relapse.
Friday, April 08, 2016
A Metabolic Twist that Drives Cancer Survival
A novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells has been identified.
Friday, April 08, 2016
Novel Metabolic Twist that Drives Cancer Survival
Researchers at CRI at UT Southwestern have identified a novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells.
Thursday, April 07, 2016
Structure of Crucial Enzyme Identified
Researchers at UTSW have determined the atomic structure of an enzyme that plays an essential role in cell division and better treatment of cancer.
Thursday, March 31, 2016
Mutation That Causes Rare Disease
A mutation has been discovered that causes a rare systemic disorder known as XLPDR and confirmed a role for nucleic acids in immune function.
Tuesday, March 29, 2016
Promoting Liver Tissue Regeneration
Researchers at CRI have reported that inactivating a certain protein-coding gene promotes liver tissue regeneration in mammals.
Saturday, March 26, 2016
Lupus Study Shows Precision Medicine’s Potential to Define the Genetics of Autoimmune Disease
Researchers at UT Southwestern have used next-generation DNA sequencing technology to identify more than 1,000 gene variants that affect susceptibility to SLE.
Saturday, March 19, 2016
Researchers Find New Cytoplasmic Role
Researchers at UT Southwestern Medical Center have found new cytoplasmic role for proteins linked to neurological diseases, cancers.
Friday, March 18, 2016
Researchers’ Work Shines LIGHT on how to Improve Cancer Immunotherapy
Researchers at UT Southwestern Medical Center have reported a strategy to make a major advancement in cancer treatment.
Thursday, March 17, 2016
UTSW Researchers Build Powerful 3-D Microscope, Create Images Of Cancer Cells
Researchers at UTSW have designed a microscope capable of creating high-resolution, 3-D images of living cancer cells in realistic and controlled microenvironments.
Friday, February 26, 2016
Pcsk9-Inhibitor Drug Class That Grew out of UTSW Research Becomes a Game-Changer for Patient
Researchers at UTSW have developed a new pcsk9-inhibitor drug class that effective in reduced the high cholesterol level.
Friday, February 26, 2016
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
Antibodies To Dengue May Alter Course Of Zika Virus Infection
Scientists at Emory Vaccine Center, in collaboration with investigators from Thailand, have found that people infected with dengue virus develop antibodies that cross-react with Zika virus.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!