Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Research Pinpoints Key Gene for Regenerating Cells After Heart Attack

Published: Friday, December 21, 2012
Last Updated: Friday, December 21, 2012
Bookmark and Share
UT Southwestern’s cardiologists and molecular biologists found that microRNAs contribute to the heart’s ability to regenerate up to one week after birth.

UT Southwestern Medical Center researchers have pinpointed a molecular mechanism needed to unleash the heart’s ability to regenerate, a critical step toward developing eventual therapies for damage suffered following a heart attack.

Cardiologists and molecular biologists at UT Southwestern, teaming up to study in mice how heart tissue regenerates, found that microRNAs - tiny strands that regulate gene expression - contribute to the heart’s ability to regenerate up to one week after birth.

Soon thereafter the heart loses the ability to regenerate. By determining the fundamental mechanisms that control the heart’s natural regenerative on-off switch, researchers have begun to better understand the No. 1 hurdle in cardiovascular research - the inability of the heart to regenerate following injury.

“For the first time since we began studying how cells respond to a heart attack, we now believe it is possible to activate a program of endogenous regeneration,” said Dr. Hesham Sadek, assistant professor of internal medicine in the division of cardiology, and the senior author of a study in the Proceedings of the National Academy of Sciences.

Each year, nearly 1 million people in the United States have a heart attack, while about 600,000 die of cardiovascular disease annually.

Heart disease is the leading cause of death in both men and women, according to figures from the Centers for Disease Control and Prevention.

As researchers worldwide strive to find ways that help the human heart cope with myriad illnesses and injuries, scientists at UT Southwestern have focused their attention on the heart’s regenerative capabilities.

In 2011, a team led by Dr. Eric Olson, chairman of molecular biology, and Dr. Sadek demonstrated that within three weeks of removing 15 percent of the newborn mouse heart, the organ was able to completely grow back the lost tissue, and as a result looked and functioned normally.

In the latest investigation, UTSW researchers found that hearts of young rodents mounted a robust regenerative response following myocardial infarction, but this restorative activity only occurs during the first week of life.

They then discovered that a microRNA called miR-15 disables the regenerative capacity after one week, but when miR-15 is blocked, the regenerative process can be sustained much longer.

“It is a fresh perspective on an age-old problem,” said Dr. Olson, director of the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer, and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology who is a co-corresponding author of the PNAS study.

Dr. Olson continued, “We’re encouraged by this initial finding because it provides us with a therapeutic opportunity to manipulate the heart’s regenerative potential.”

Further research will be needed to optimize the ways in which medical scientists, and eventually clinicians, may be able to control this regenerative process.

“This may well be the beginning of a new era in heart regeneration biology,” Dr. Sadek said. “Our research provides hope that reawakening the regenerative capacity of adult mammalian hearts is within reach.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Limits Desire To Drink Alcohol
Research teams have identified a gene variant that suppresses the desire to drink alcohol.
Tuesday, November 29, 2016
Tau Cluster Structure Determines Dementia Future
Research helps explain diversity of dementias linked to tau protein aggregation.
Tuesday, November 01, 2016
UTSW Finds Key Step in Brain Cell Death During Stroke
Researchers at UTSW have found novel function for old protein in work that could lead to new ways to protect brain from stroke damage.
Saturday, October 08, 2016
Contribution Increases by Tenfold The Mouse Mutation Resources of One Type Available
The repository provides academic researchers with unique genetic models that are unavailable commercially.
Thursday, October 06, 2016
Alzheimer’s Linked Protein Can Be Removed From Brain Without Hindering Memory, Learning
Researchers at UTSW have found that the mice can maintain their learning and memory when virtually all ApoE is removed from the brain but kept present in the liver to filter cholesterol.
Wednesday, October 05, 2016
Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
The team of researchers grew crystals of nicotinic receptors, a breakthrough that scientists expect will help them develop new treatments by understanding nicotine’s molecular effects.
Tuesday, October 04, 2016
Beige Fat Formation Linked to Anti-diabetic Effect
Researchers at UTSW have found that the protein connexin 43 forms cell-to-cell communication channels on the surface of emerging beige fat cells that amplify the signals from those few nerve fibers.
Saturday, October 01, 2016
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
Friday, September 30, 2016
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Tuesday, September 27, 2016
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Wednesday, September 21, 2016
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Wednesday, September 21, 2016
Scientists Enhance Ability of Antibiotics to Defeat Resistant Types of Bacteria
Researchers at UTSW have reported successful use of a synthetic molecule to enhance antibiotic effectiveness against certain pathogens.
Saturday, September 17, 2016
Researchers Identify Method of Creating Long-Lasting Memories
Researchers at UTSW have found that the attention-grabbing experiences trigger the release of memory-enhancing chemicals to help etch memories into the brain.
Thursday, September 08, 2016
Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Tuesday, August 23, 2016
Signaling Molecule Regulates Release of the Hunger Hormone Ghrelin
Researchers at UT Southwestern have identified that the blocking release of the hormone ghrelin may mediate low blood sugar effect in children taking beta blockers.
Tuesday, August 23, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Transporting Microscopic Cargo Between Human Cells
Scientists have developed a virus-inspired delivery system for material transport between cells.
New Form of Autism Found
An international team of researchers have identified a new form of syndromic autism.
Radiation-Free Imaging in the Brain
Scientists create sensors that use proteins to detect particular targets through induced blood flow changes.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!