Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Search for Epigenetic Decoder in Brain Cells Leads Scientists to Rett Syndrome

Published: Monday, December 31, 2012
Last Updated: Monday, December 31, 2012
Bookmark and Share
New analysis suggests that MeCP2 recognizes 5hmC in the brain and facilitates activation of the genes.

A few years ago, scientists discovered an unexpected layer of information woven into the genetic code - a nucleotide called 5-hydroxymethylcytosine, or 5hmC.

Its meaning was unknown at the time, but a new analysis suggests that a regulatory protein called MeCP2, known for its involvement in the nervous system disorder Rett Syndrome, recognizes 5hmC in the brain and facilitates activation of the genes in which it is most abundant.

The study, which includes the first maps of 5hmC’s distribution throughout the genomes of three types of brain cells, indicates 5hmC has different effects on gene activity in the nervous system than it does in other cell types in which it has been studied.

“This direct connection between 5hmC and Rett Syndrome will force two fast-moving and exciting fields to come together in a way that was totally unanticipated,” says Howard Hughes Medical Institute investigator Nathaniel Heintz, who led the study.

Heintz and his colleagues published their findings in the December 21, 2012, issue of the journal Cell.

A genome’s instructions for building proteins are spelled out in its sequence of As, Ts, Cs, and Gs - the DNA building blocks more formally known as adenine, thymine, cytosine, and guanine.

But just as important to shaping an organism’s form and function are chemical modifications to those nucleotides that influence how the DNA code is read. These modifications, known as epigenetic changes, help control when and where genes are switched on.

When Skirmantas Kriacionis in Heintz’s lab at Rockefeller University discovered high levels of 5hmC - a modified form of cytosine that had previously been found only in bacterial viruses - in brain cells in 2009, the scientists immediately suspected the nucleotide was involved in epigenetic regulation.

To figure out its significance, they began working to compile a map of where in the genome the new nucleotide could be found. 5hmC has since been found in other mammalian cells, but it is 10-20 times more abundant in the brain, so Heintz’s team focused their study there.

Other researchers had noted that in embryonic stem cells, 5hmC tended to cluster around regulatory regions of the genome. In brain cells, however, the nucleotide was distributed across genes - suggesting that its effects on gene regulation might vary by tissue or even cell.

Heintz, who has been working for decades to understand the differences between cell types in the nervous system (he estimates there are about 500), and his team chose three types of brain cells in which to map 5hmC: two types of neurons -Purkinje cells, which are large and elaborately branched, and granule cells, which are small and compact-as well as Bergmann glial cells, brain cells with an intermediary size and structure.

Although all of these cell types contain the same genetic information, each activates a unique set of genes to establish its specialized structure and function.

Marian Mellen, a postdoctoral fellow in the lab, used a chemical label to pinpoint 5hmC in the DNA of each of the three types of cells. In addition, they mapped the locations of another modified version of cytosine, 5-methyl cytosine, or 5mC. 5mC is a well studied epigenetic modification known to silence genes.

Their maps revealed that in each cell type, 5hmC was most abundant in active genes. Their data also showed that genes with high levels of 5hmC had low levels of the gene-silencing 5mC - though the strength of this relationship depended on the cell type.

“If you had to state a general rule, it would probably be that the higher the ratio of 5hmC to 5mC in a gene body in the nervous system, the more likely the gene will be expressed at high levels,” Heintz summarizes. “But transcriptional control is cell-specific.” Even in the three cell types they have so far studied, he says, the strength of each nucleotide’s effects on gene activity are not equivalent.

To search for the proteins that decode the information communicated by 5hmC in the brain, Kriaucionis and graduate student Pinar Ayata searched for proteins in brain cells that stuck to beads that they had coated with 5hmC. They found only one such protein, and were able to identify it as the regulatory protein known as methyl C-p-G binding protein 2 (MeCP2).

“MeCP2 is present at very high levels in the nervous system and at vanishingly low levels in the periphery - so maybe it’s not surprising that this epigenetic mark that is largely nervous system specific is recognized by a protein that is also nervous system specific,” Heintz says. “But to find that this well known, well studied protein is directly connected to hydroxymethylcytosine was really shocking.”

MeCP2 is best known for its involvement in Rett Syndrome. In children with Rett Syndrome, a mutation in the protein causes language and growth retardation, breathing problems, seizures, motor dysfunction, hand-wringing, and social impairment.

In 2008, HHMI investigator Huda Zoghbi, who discovered MeCP2’s link to Rett Syndrome, showed that in certain parts of the brain, the mutated protein alters the expression of about 2,500 genes. MeCP2 is now known to help inactivate genes marked by 5mC.

The new findings suggest MeCP2 can also help activate genes in which the concentration of 5hmC is high. In fact, experiments done by Ayata indicate that the regulatory protein has an equal affinity for binding to either of the two nucleotides. Heintz plans to investigate how the same protein can trigger these opposing effects, depending on which nucleotide it binds.

“This is nice situation where trying to study the biology of a particular cell type led us to an area of investigation that we had not anticipated,” he says, noting that he is eager to explore 5hmC’s involvement in Rett Syndrome. “It’s rare that you get a chance to be thrust into a field that you really didn’t think you were going to be inhabiting - but if you follow your experiments and believe what they tell you, you can end up in very different places than you had thought.”

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Monday, July 25, 2016
One-Drop-of-Blood Reveals a Patient’s Viral History
New technology developed by Howard Hughes Medical Institute researchers makes it possible to test for current and past infections with any known human virus by analyzing a single drop of a person's blood.
Tuesday, June 09, 2015
A Crisper View of DNA-Snipping Enzyme
HHMI scientists have created a portrait of a DNA-snipping protein called Cas9, a powerful research tool used in many labs for genome editing.
Saturday, February 08, 2014
Spontaneous Mutations Play a Key Role in Congenital Heart Disease
New research shows that about 10 percent of these defects are caused by genetic mutations that are absent in the parents of affected children.
Monday, May 13, 2013
A New View of Transcription Initiation
Reading the human genome.
Monday, March 04, 2013
Stash of Stem Cells Found in a Human Parasite
New findings were published online on February 20, 2013, in the journal Nature.
Tuesday, February 26, 2013
Scientists Find Mechanism that Triggers Immune Responses to DNA
HHMI scientists have discovered the molecular pathway outside a cell’s nucleus in the cytosol.
Monday, December 24, 2012
Erin O’Shea Named Vice President and Chief Scientific Officer at HHMI
O’Shea to begin her new duties part-time in January 2013 and transition to full-time in July 2013.
Monday, December 03, 2012
Susan Desmond-Hellmann Elected as HHMI Trustee
Desmond-Hellmann becomes one of 11 Trustees of the Institute.
Thursday, November 08, 2012
HHMI’s Robert Lefkowitz Awarded 2012 Nobel Prize in Chemistry
Robert Lefkowitz and Brian K. Kobilka are the recipients of the 2012 Nobel Prize in Chemistry for studies of G-protein coupled receptors.
Thursday, October 11, 2012
Analysis of Stickleback Genome Sequence Catches Evolution in Action
Reuse of key genes is a common theme, as reported by scientists at the Howard Hughes Medical Institute.
Thursday, April 05, 2012
Autism Gene Screen Highlights Protein Network for Howard Hughes Medical Institute Scientists
Over the past decade, scientists have added many gene mutations to the list of potential risk factors for autism spectrum disorders -- but researchers still lack a definitive explanation of autism’s cause.
Thursday, April 05, 2012
Scientists Trace Origin of Recent Cholera Epidemic in Haiti
The finding supports the notion that the cholera bacteria fueling the outbreak arrived on the island via recent visitors.
Friday, December 10, 2010
Protein-Folding Game Taps Power of Worldwide Audience to Solve Difficult Puzzles
Extended efforts could pay off in the design of new proteins that help fight disease, sequester carbon, or clean up the environment.
Monday, August 09, 2010
New Tool Illuminates Connections Between Stem Cells and Cancer
HHMI researchers have a new tool to understand how cancers grow - and with it a new opportunity to identify novel cancer drugs.
Monday, February 22, 2010
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Transporting Microscopic Cargo Between Human Cells
Scientists have developed a virus-inspired delivery system for material transport between cells.
Metabolite Promotes Cancer Cell Transformation
Researchers have identified a metabolite that promotes cancer cell transformation and colorectal cancer spread.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Zika’s Entry Points
Discovery shows Zika infection of neural progenitor cells occurs regardless of AXL production, which was thought to be the main vector for the virus.
New Form of Autism Found
An international team of researchers have identified a new form of syndromic autism.
Radiation-Free Imaging in the Brain
Scientists create sensors that use proteins to detect particular targets through induced blood flow changes.
Failings in Conveying Risks of Undercooked Meat
A study has found that restaurants do not communicate the risks of eating undercooked meats.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos