Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Protein Regulates Protein Folding in Cells During Stress

Published: Thursday, January 03, 2013
Last Updated: Thursday, January 03, 2013
Bookmark and Share
Researchers link protein known for cell mobility with protein folding during stress.

Cornell researchers have discovered that a protein known for moving cells around in the body also helps regulate a cellular organelle responsible for generating one-third of all proteins in the human body.

The protein, called non-muscle myosin IIB (NMIIB), is required to alleviate stress that occurs when the cell's protein factory, the endoplasmic reticulum, is overburdened.

In the study, published in the Dec. 11 issue of the journal Developmental Cell, the researchers knocked out the gene that codes for NMIIB in mouse cells as well as a model organism, the roundworm C. elegans, and found that when the endoplasmic reticulum was under stress, the cells were unable to respond properly and errors in protein folding were left uncorrected.

As a protein's final structure is key to its proper function, improperly folded proteins lead to cell death and underlie the development of human diseases including diabetes, cystic fibrosis, and neurodegenerative and other conformational diseases.

"If cells cannot adjust folding capacity in response to cellular needs, then they die," said Ling Qi, Cornell assistant professor of nutritional sciences and the study's senior author. Yin He, a graduate student in the Qi lab, is the paper's lead author.

When the endoplasmic reticulum is stressed, order is partly restored by a protein called IRE1α, which has been used by organisms throughout evolution.

IRE1α senses mis-folded proteins, binds to them and triggers a cascade of signals to the cell's nucleus. The nucleus then responds by improving the folding environment within the endoplasmic reticulum.

During normal function, NMIIB lies in a folded, inactive form, but during endoplasmic reticulum stress, NMIIB unfolds. When unfurled, NMIIB has a tail that acts as a cantilever, attaching to IRE1α and moving it into aggregates or foci, required for optimal IRE1 activation and function.

"When we knock out myosin, we don't see the IRE1α foci, and if there is no foci, then the downstream signaling and the stress response is attenuated," said Qi.

NMIIB is a cytoskeletal protein, a structural element that exists in the cell's inner fluid and helps provide the cell with its structure. The researchers were surprised to find such a protein involved in IRE1α activation since activation signals during stress were previously thought emanate from compartments of the endoplasmic reticulum, called lumen, where protein folding occurs, Qi added.

"No one has previously reported a link between IRE1α and NMIIB," said He. "Since endoplasmic reticulum stress is associated with so many human diseases, we want to identify novel regulators of these pathways so we can target them therapeutically," she added.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
Synthetic Immune Organ Produces Antibodies
Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism.
Friday, June 12, 2015
On Planes, Savory Tomato Becomes Favored Flavor
Study shows the effect that airplane noise has on passengers' taste preferences.
Friday, May 15, 2015
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
'Shield' Gives Tricky Proteins a New Identity
Solubilization of Integral Membrane Proteins with high Levels of Expression.
Saturday, April 11, 2015
DNA Safeguard May Be Key In Cancer Treatment
Cornell researchers have developed a new technique to understand the actions of key proteins required for cancer cells to proliferate.
Monday, March 09, 2015
A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
Bacteria Be Gone!
New technology keeps bacteria from sticking to surfaces.
Monday, January 19, 2015
On the Environmental Trail of Food Pathogens
Learning where Listeria dwells can aid the search for other food pathogens.
Tuesday, December 23, 2014
Chemists Show That ALS is a Protein Aggregation Disease
Using a technique that illuminates subtle changes in individual proteins, chemistry researchers at Cornell have uncovered new insight into the underlying causes of Amyotrophic Lateral Sclerosis (ALS).
Thursday, October 23, 2014
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
Thursday, August 28, 2014
Computer Model Reveals Cancer's Energy Source
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.
Tuesday, August 19, 2014
A New Player in Lipid Metabolism Discovered
Specially engineered mice gained no weight, and normal counterparts became obese on the same high-fat, obesity-inducing Western diet.
Monday, August 18, 2014
Ingested Nanoparticles May Damage Liver
Although nanoparticles in food, sunscreen and other everyday products have many benefits, researchers from Cornell are finding that at certain doses, the particles might cause human organ damage.
Tuesday, August 12, 2014
Foodborne Pathogen Detection Speeds Up Dramatically
Next-generation sequencing techniques allow rapidly identification of strains of salmonella, quickening responses to potential outbreaks.
Monday, July 21, 2014
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos