Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

New Stem Cell Approach for Blindness Successful in Mice

Published: Tuesday, January 08, 2013
Last Updated: Tuesday, January 08, 2013
Bookmark and Share
Researchers transplant developing cells into mice eyes and re-form the entire light-sensitive layer of the retina.

Blind mice can see again, after Oxford University researchers transplanted developing cells into their eyes and found they could re-form the entire light-sensitive layer of the retina.

Videos show the nocturnal mice, which once didn't notice the difference between light and dark at all, now run from the light and prefer to be in the dark - just like mice with normal vision.

The researchers say the approach has relevance for treating patients with retinitis pigmentosa, a condition in which the light-sensing cells in the retina gradually die leading to progressive blindness.

The study was led by Professor Robert MacLaren in the Nuffield Department of Clinical Neurosciences at the University of Oxford, together with Dr Mandeep Singh, an eye surgeon from the National University Hospital of Singapore who is currently undertaking PhD studies in Oxford. The findings are published online in the journal PNAS.

The researchers worked with mice that are blind due to complete loss of the light-sensing photoreceptor cells in their retinas. This is the most relevant mouse model for treating patients who are blind from retinitis pigmentosa.

After two weeks, the researchers showed the cells transplanted into the eye had re-formed a full light-detecting layer on the retina and the mice could see.

The cells used were mouse 'precursor' cells that are on an initial path towards developing into retinal cells.

A pupil constriction test showed that, of the 12 mice that received the cell transplant, 10 showed improved pupil constriction in response to light. This shows that the retinas of the mice were sensing the light once more, and this was being transmitted down the optic nerve to the brain.

Dr Singh says: 'We found that if enough cells are transplanted together, they not only become light sensing but they also regenerate the connections required for meaningful vision.'

Professor MacLaren explains: 'Stem cells have been trialled in patients to replace the pigmented lining of the retina, but this new research shows that the light-sensing layer might also be replaced in a similar way. The light-sensing cells have a highly complex structure and we observed that they can resume function as a layer and restore connections after transplantation into the completely blind retina.'

In looking forward towards potential cell treatments for blindness in humans, Professor MacLaren explains that they would like to use induced pluripotent stem cells, or iPS cells. These are stem cells that have been generated from the patient’s own cells, such as skin or blood cells, and can then be directed to form precursors of the retina cells.

Professor MacLaren says that this has been achieved by others: 'All the steps are there for doing this in patients in the future.' The next step is to find a reliable source of cells in patients that can provide the stem cells for use in such transplants, he says.

While these are more long-term developments to work towards, Professor MacLaren says 'Our study shows what we could achieve with a cell-based approach.'

'We have shown the transplanted cells survive, they become light-sensitive, and they connect and reform the wiring to the rest of the retina to restore vision,' he says. 'The ability to reconstruct the entire light sensitive layer of the retina using cell transplantation is the ultimate goal of the stem cell treatments for blindness we are all working towards.'

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Tuesday, October 06, 2015
Genes That Protect African Children From Developing Malaria Identified
Variations in DNA at a specific location on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.
Friday, October 02, 2015
Photosynthesis Gene Could Help Crops Grow in Adverse Conditions
A gene that helps plants to remain healthy during times of stress has been identified by researchers at Oxford University.
Monday, September 21, 2015
Vaccine for Common Childhood Infection May Finally be Possible
Oxford University researchers have successfully completed the first human trial of a vaccine for RSV, a virus that is particularly dangerous to infants.
Friday, August 14, 2015
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Monday, August 03, 2015
How do Networks Shape the Spread of Disease and Gossip?
A team of mathematicians from Oxford University, University of North Carolina at Chapel Hill, and Rutgers University used a set of mathematical rules to encode how a contagion spreads, and then studied the outcomes of these rules.
Thursday, July 23, 2015
A Combination Of Genes Results In Malaria Drug Resistance
The largest genome-wide study of the malaria parasite finds that the drug resistance occurs because of a key mutation happening on top of 'background' mutations which make the parasite more likely to develop drug resistance later.
Tuesday, January 20, 2015
Metal Test Could Help Diagnose Breast Cancer Early
It may be possible to develop a simple blood test that, by detecting changes in the zinc in our bodies, could help to diagnose breast cancer early.
Thursday, December 11, 2014
Booster Ebola Vaccine Enters First Trials
Trials aim to determine the safety of a candidate booster vaccine.
Thursday, December 04, 2014
Gene Therapy Trial Shows Promise for Type of Blindness
Patients showed improvements in their vision in dim light and two of the six were able to read more lines on the eye chart.
Thursday, January 16, 2014
Malaria Vaccine Offers New Mode of Protection Against Disease
A novel malaria vaccine developed at Oxford University has shown promising results in the first clinical trial.
Friday, November 29, 2013
Neanderthal Viruses Found in Modern Humans
Ancient viruses from Neanderthals have been found in modern human DNA by researchers at Oxford University and Plymouth University.
Tuesday, November 19, 2013
Global Warming Continues; Most Extreme Projections ‘Less Likely’
Observations of the climate system’s response to rising greenhouse gas levels are consistent with conventional estimates of the long-term ‘climate sensitivity’, despite a “warming pause” over the past decade.
Monday, May 20, 2013
Oxford Uni Announces Shell Support for Energy Research
Oxford University has announced that Shell International Exploration and Production B.V. has contributed a £5.9m boost to research into natural energy resources.
Thursday, May 09, 2013
Launch of £90m Initiative in Big Data and Drug Discovery at Oxford University
'Big data' to revolutionise healthcare.
Tuesday, May 07, 2013
Scientific News
Atriva Therapeutics GmbH Develops Innovative Flu Drug
Highly effective against seasonal and pandemic influenza.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Study Removes Cancer Doubt for Multiple Sclerosis Drug
Researchers from Queen Mary University of London are calling on the medical community to reconsider developing a known drug to treat people with relapsing Multiple sclerosis after new evidence shows it does not increase the risk of cancer as previously thought.
Self-Propelled Powder to Stop Bleeding
UBC researchers have created the first self-propelled particles capable of delivering coagulants against the flow of blood to treat severe bleeding, a potentially huge advancement in trauma care.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Antibody Treatment Efficacious in Psoriasis
An experimental, biologic treatment, brodalumab, achieved 100 percent reduction in psoriasis symptoms in twice as many patients as a second, commonly used treatment, according to the results of a multicenter clinical trial led by Mount Sinai researchers.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Fatty Liver Disease and Scarring Have Strong Genetic Component
Researchers say that hepatic fibrosis, which involves scarring of the liver that can result in dysfunction and, in severe cases, cirrhosis and cancer, may be as much a consequence of genetics as environmental factors.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos