Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Spread of Cancer Cells may be Slowed by Targeting of Protein

Published: Tuesday, January 08, 2013
Last Updated: Tuesday, January 08, 2013
Bookmark and Share
The spread of cancer cells may be slowed by targeting the protein km23-1, according to researchers at Penn State College of Medicine.

A motor protein that transports cargo within the cell, km23-1 is also involved in the movement or migration of cells. Migration is necessary for cancer to spread, so understanding this cell movement is important for development of better cancer treatments.

Kathleen Mulder, Ph.D., professor, biochemistry and molecular biology, looked for partner proteins that bind to and cooperate with km23-1 during cell movement, which turned out to include factors that can control proteins actin and RhoA.

“Cell migration is an important aspect of the process of a tumor spreading,” Mulder said. “Changes in this process transform tumor cells from local, noninvasive, confined cells to the migrating, metastatic cancer cells.”

Cells move through the body using the protein actin, which forms the structural frame of the cell, called the cytoskeleton. The actin creates a protrusion in the cell membrane by forming strands of thread-like fibers on the leading edge of the cell, pushing the cell forward. Several identified proteins regulate the reorganization of the cytoskeleton and are more active in several types of cancers.

Overexpression of km23-1 increases actin fiber formation, whereas when km23-1 is diminished, RhoA activity decreases. RhoA is known to be an important switch, activating processes in migration.

“By knowing that RhoA activity was decreased when km23-1 was reduced, we infer that km23-1 is needed for the regulation of these switches and has a role in cell movement,” Mulder said.

To test this in the lab, km23-1 was reduced in a sample of human colon cancer cells. When km23-1 was diminished, cancer cells migrated less. More research needs to be done, but km23-1 may be a promising target for anti-metastatic drugs and cancer therapies to slow the spread of the disease.

“By inhibiting km23-1, you inhibit events that contribute to the cells spreading to other parts of the body,” Mulder said.

Results were reported in Biochemical and Biophysical Research Communications.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

First Accurate Simulation of a Virus Invading a Cell
For the first time, scientists know what happens to a virus’ shape when it invades a host cell.Understanding how the virus shape specifically changes could lead to more effective anti-viral therapies.
Wednesday, September 14, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!