Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Improving the Accuracy of Cancer Diagnoses

Published: Tuesday, January 08, 2013
Last Updated: Tuesday, January 08, 2013
Bookmark and Share
New spectroscopy technique could help doctors better identify breast tumors.

Tiny calcium deposits can be a telltale sign of breast cancer. However, in the majority of cases these microcalcifications signal a benign condition.  A new diagnostic procedure developed at MIT and Case Western Reserve University (CWRU) could help doctors more accurately distinguish between cancerous and noncancerous cases.

When microcalcifications are spotted through mammography, doctors perform a follow-up biopsy to remove the suspicious tissue and test it for cancer. In 15 to 25 percent of cases, however, they are unable to retrieve the tissue that contains the calcium deposits, leading to an inconclusive diagnosis. The patient then has to undergo a much more invasive surgical procedure.

The new method, which uses a special type of spectroscopy to locate microcalcifications during the biopsy, could dramatically reduce the rate of inconclusive diagnosis, according to the researchers. In a study appearing in the Proceedings of the National Academy of Sciences the week of Dec. 24, they found that the spectroscopy technique had a success rate of 97 percent.

In addition, the spectroscopic approach could easily be integrated into the current biopsy procedure, says Ishan Barman, an MIT postdoc and one of the paper’s lead authors. MIT postdocs Jaqueline Soares and Narahara Chari Dingari are also lead authors; senior authors are Maryann Fitzmaurice, senior research associate and adjunct associate professor of pathology and oncology at CWRU, and Ramachandra Rao Dasari, associate director of MIT’s Laser Biomedical Research Center (LBRC).

‘An arduous procedure’

Microcalcifications form when calcium from the bloodstream is deposited onto degraded proteins and lipids left behind by injured and dying cells. Though often seen in breast tumors, microcalcifications are rarely found in other types of cancer, Fitzmaurice says. Calcification also plays a major role in the hardening of the arteries seen in atherosclerosis.

Among women with microcalcifications spotted during a mammogram, only about 10 percent will turn out to have cancer, so the follow-up biopsy is critical. During that procedure, the radiologist first takes X-rays from three different angles to locate the microcalcifications, then inserts a needle into the tissue and removes five to 10 samples.

A pathologist then examines the tissues to see if they contain microcalcifications. If not, the radiologist tries again, after taking new X-rays. However, this second attempt is rarely successful, Fitzmaurice says.

“If they don't get them on the first pass, they usually don't get them at all,” she says. “It can become a very long and arduous procedure for the patient, with a lot of extra X-ray exposure, and in the end they still don't get what they’re after, in one out of five patients.”

For the past several years, the MIT and CWRU team has been working to develop a spectroscopic technique that can analyze the tissue that the radiologist is about to biopsy — revealing, in a matter of seconds, whether that tissue actually contains microcalcifications.

They began with Raman spectroscopy, which uses light to measure energy shifts in molecular vibrations, revealing precise molecular structures. Because it offers such detailed information about the chemical composition of a tissue, Raman spectroscopy is very accurate in identifying microcalcifications. However, the equipment required is expensive, and the analysis takes a long time.

In the new study, the researchers showed that another technique, known as diffuse reflectance spectroscopy, gives results just as accurate as Raman spectroscopy. What makes diffuse reflectance spectroscopy more appealing is that it provides information within seconds, allowing the radiologist to move the needle if it’s in the wrong spot, before taking any samples.

“With our new method, we could obtain similar results with less time and less expense,” Dingari says.

Distinctive patterns

Diffuse reflectance spectroscopy works by sending light toward the tissue, then capturing and analyzing the light after its interaction with the sample. In this study, the researchers examined 203 tissue samples from 23 patients, within minutes of those samples’ removal.

Each of the three types of tissue (healthy, lesions without microcalcifications, and lesions with microcalcifications) has subtle differences in its spectrographic signature, which can be used to distinguish among them. By analyzing these patterns, the researchers created a computer algorithm that can identify the tissues with a success rate of 97 percent.

The changes in tissues’ light absorption are likely caused by altered levels of specific proteins (elastin, desmosine and isodesmosine) that are often cross-linked with calcium deposits in diseased tissue, Soares says.

For clinical use, a radiologist would perform spectroscopy just after inserting the needle to provide enhanced real-time guidance to the current biopsy procedure. The researchers are now planning for a study in which they will test their needle and spectroscopy setup in patients as the biopsies are being done.

James Tunnell, an associate professor of biomedical engineering at the University of Texas, says the findings represent a good first step toward creating a system that could have a big impact on breast cancer diagnosis. “This technology can be integrated into the system that is already used to take biopsies. It’s a very simple technology that can get the same amount of accuracy as more complicated systems” such as Raman spectroscopy, says Tunnell, who was not involved in the study.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
Tuesday, November 24, 2015
Game for Climate Adaptation
MIT-led project shows a new method to help communities manage climate risks.
Friday, November 06, 2015
Using Ultrasound to Improve Drug Delivery
New approach could aid in treatment of inflammatory bowel disease.
Friday, October 23, 2015
Drug-Resistance Mechanism in Tumor Cells Unravelled
Targeting the RNA-binding protein that promotes resistance could lead to better cancer therapies.
Friday, October 23, 2015
Quantum Physics Meets Genetic Engineering
Researchers use engineered viruses to provide quantum-based enhancement of energy transport.
Friday, October 16, 2015
Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Friday, October 02, 2015
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
Tuesday, September 29, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
How Flu Viruses Gain The Ability To Spread
New study reveals the soft palate is a key site for evolution of airborne transmissibility.
Friday, September 25, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Personalized Heart Models For Surgical Planning
System can convert MRI scans into 3D-printed, physical models in a few hours.
Friday, September 18, 2015
Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Tuesday, September 01, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Kitchen Utensils Can Spread Bacteria Between Foods
In a recent study researchers found that produce that contained bacteria would contaminate other produce items through the continued use of knives or graters—the bacteria would latch on to the utensils commonly found in consumers' homes and spread to the next item.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Chemical Design Made Easier
Rice University scientists prepare elusive organocatalysts for drug and fine chemical synthesis.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos