Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chromosome "Anchors" Organize DNA during Cell Division

Published: Wednesday, January 09, 2013
Last Updated: Wednesday, January 09, 2013
Bookmark and Share
Salk discovery of new role for telomeres in cellular growth may shed light on aging and age-related diseases.

For humans to grow and to replace and heal damaged tissues, the body's cells must continually reproduce, a process known as "cell division," by which one cell becomes two, two become four, and so on. A key question of biomedical research is how chromosomes, which are duplicated during cell division so that each daughter cell receives an exact copy of a person's genome, are arranged during this process.

Now, scientists at the Salk Institute have discovered a new characteristic of human cell division that may help explain how our DNA is organized in the nucleus as cells reproduce. They found that telomeres, molecular caps that protect the ends of the chromosomes, move to the outer edge of the cell's nucleus after they have been duplicated.

While the implications of this spatial reorganization of telomeres are not yet clear, the findings may shed light on how our genes are regulated and how gene expression programs are altered during cell division, an important step in understanding aging and diseases that stem from genetic mutations, such as cancer.

"What we discovered is that telomeres not only protect our chromosomes, they also help organize our genetic material in the nucleus," says Jan Karlseder, a professor in Salk's Molecular and Cell Biology Laboratory and the Donald and Darlene Shiley Chair. "This is important, because the three-dimensional position of DNA in the nucleus influences gene expression profiles and how the genome morphs over time."

Telomeres, a combination of proteins and DNA, are crucial in DNA replication, tumor suppression and aging. Every time a primary human cell divides, its telomeres get shorter, until critically short telomeres lead cells to self-destruct. Much of Karlseder's research has focused on understanding telomere dynamics in order to develop ways to influence the aging process, and as a result, restrict cancer cell growth.

In addition to exploring the involvement of telomeres in premature aging diseases and interactions between the DNA damage machinery and telomeres, Karlseder studies the role of telomeres during the cell cycle. Previous studies on human cells have shown that telomeres change positions during cell division, suggesting they might also play a role in organizing DNA in the nucleus. But these studies provided only isolated snapshots of telomeres at various stages of the cell cycle.

In their new study, the Salk researchers used advanced time-lapse live-cell confocal microscopy to track telomere movement in real time throughout the cell cycle. They followed the telomeres for 20 hours in living cells by labeling them with molecules that glowed under the microscope. They also recorded the movement of chromatin, a combination of DNA and proteins that forms chromosomes.

The scientists found that the telomeres moved to the outer periphery of the nuclear envelope of each daughter cell nucleus as they assemble after mitosis, the stage of cell division during which the cell's DNA is duplicated to provide each daughter cell with its own copy. By exploring the underlying molecular pathways, the researchers determined that interactions between two proteins, RAP1 and Sun1, seem to tether the telomeres to the nuclear envelope. Sun1 alone was also capable of attracting the telomeres to the nuclear envelope, suggesting the protein is essential for the process and that other elements might be able to replace RAP1 during tethering.

"The tethering of telomeres to the nuclear envelope may serve as an anchor point to reorganize chromatin after each cell division, so that our DNA is correctly situated for gene expression," Karlseder says. "This tethering could also play a role in the maintenance of telomeres, thereby influencing aging, cancer development and other disorders associated with DNA damage. We plan to explore these possibilities in future experiments."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene-Editing Partially Restores Vision
Researchers have discovered, for the first time, how to place DNA in specific locations in non-dividing cells.
Monday, November 21, 2016
Discovery of Gene-Editing Holy-Grail Opens New Avenues in Research and Treatments
Salk researchers have discovered, for the first time, how to place DNA in specific locations in non-dividing cells.
Thursday, November 17, 2016
Targeting Fat to Treat Cancer
Researchers develop novel cancer treatment that halts fat synthesis in cells, stunting tumors.
Wednesday, September 21, 2016
Revealing T-Cells in Action
Salk scientists show how T-cell receptors reposition during an immune response, revealing more on how the immune system is regulated.
Friday, June 17, 2016
“Secret Sauce” for Personalized, Functional Insulin-Producing Cells
Researchers uncover molecular switch to make effective sugar-responsive, insulin-releasing cells in a dish, offering hope for diabetes therapy.
Thursday, April 14, 2016
“Secret Sauce” for Personalized, Functional Insulin-producing Cells
Researchers uncover molecular switch to make effective sugar-responsive, insulin-releasing cells in a dish, offering hope for diabetes therapy.
Wednesday, April 13, 2016
Not All Organs Age Alike
Study shows first comprehensive view of how proteins age in different organs.
Monday, September 21, 2015
Epigenetic Variations Between Tissues
A Salk Institute-led team has generated a map of the human methylome, gaining insight into patterns of DNA methylation of various tissues.
Wednesday, June 03, 2015
New Stem Cell May Overcome Hurdles for Regenerative Medicine
Scientists have discovered a novel type of pluripotent stem cell capable of developing into any type of tissue whose identity is tied to their location in a developing embryo.
Monday, May 11, 2015
Vital Step in Stem Cell Growth Revealed
Salk scientists' finding could aid regenerative and cancer therapies.
Thursday, May 07, 2015
Gene-Editing Technique Offers Hope For Hereditary Diseases
Salk scientists use molecular "scissors" to eliminate mitochondrial mutations in eggs and embryos.
Monday, April 27, 2015
Cellular Scissors Chop up HIV Virus
Salk scientists re-engineered the bacterial defense system CRISPR to recognize HIV inside human cells and destroy the virus, offering a potential new therapy.
Thursday, March 12, 2015
Powerful Method To Speed Cancer Drug Discovery Unveiled
The new method lets researchers identify weak and previously undetectable interactions between proteins inside living cells.
Monday, November 24, 2014
Salk Scientists Discover a Key to Mending Broken Hearts
Researchers regenerate and heal mouse hearts by using the molecular machinery the animals had all along.
Wednesday, November 12, 2014
Turning Human Skin Cells Into Immune-Fighting White Blood Cells
The fast and safe technique developed at the Salk Institute circumvents problems that have hindered regenerative medicine.
Friday, September 12, 2014
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Soil Carbon Release Might Equal U.S. Emissions
Research suggests 55M tons of carbon will be release from soils by 2050, 17% higher than prjected emissions.
Inspiring Futuristic Innovation: Brain ‘Organoids’
Scientists create artificial brains, providing an advanced model for studying brain tumour development.
‘NoBody,’ a Microprotein On a Mission
Researchers identify over 400 microproteins encoded in the human genome, one of which clears unneeded genetic material inside cells.
Unexpected Epigenetic Enzymes Role in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
New Form of Autism Found
An international team of researchers have identified a new form of syndromic autism.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!