Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

In Vitro Study Finds Digested Formula, But Not Breast Milk, is Toxic to Cells

Published: Wednesday, January 09, 2013
Last Updated: Wednesday, January 09, 2013
Bookmark and Share
Findings may help explain development of fatal condition in premature infants.

Free fatty acids created during the digestion of infant formula cause cellular death that may contribute to necrotizing enterocolitis, a severe intestinal condition that is often fatal and occurs most commonly in premature infants, according to a study by University of California, San Diego bioengineers. Their report, which was based on in vitro tests comparing the digestion of fresh human breast milk and nine different infant formulas, was published online in the journal Pediatric Research.

Scientists have long known that premature infants fed formula are more likely to develop necrotizing enterocolitis than those fed breast milk. The condition is the leading cause of death from gastrointestinal diseases in premature infants, but the underlying mechanism has not been understood.  Alexander Penn, a research scientist working in the Microcirculation Laboratory of bioengineering Professor Geert Schmid-Schönbein from the UC San Diego Jacobs School of Engineering, believes they have come closer to an answer.

Penn and others had previously determined that the partially digested food in a mature, adult intestine is capable of killing cells, due to the presence of free fatty acids which have a “detergent” capacity that damages cell membranes.  The intestines of healthy adults and older children have a mature mucosal barrier that may prevent damage due to free fatty acids. However, the intestine is leakier at birth, particularly for preterm infants, which could be why they are more susceptible to necrotizing enterocolitis.

Therefore, the researchers wanted to know what happens to breast milk as compared to infant formula when they are exposed to digestive enzymes.   They “digested,” in vitro, infant formulas marketed for full term and preterm infants as well as fresh human breast milk using pancreatic enzymes or fluid from an intestine. They then tested the formula and milk for levels of free fatty acids. They also tested whether these fatty acids killed off three types of cells involved in necrotizing enterocolitis: epithelial cells that line the intestine, endothelial cells that line blood vessels, and neutrophils, a type of white blood cell that is a kind of “first responder” to inflammation caused by trauma in the body.

Overwhelmingly, the digestion of formula led to cellular death, or cytotoxicity – in less than 5 minutes in some cases – while breast milk did not. For example, digestion of formula caused death in 47 percent to 99 percent of neutrophils while only 6 percent of them died as a result of milk digestion.  The study found that breast milk appears to have a built-in mechanism to prevent cytotoxicity. The research team believes most food, like formula, releases high levels of free fatty acids during digestion, but that breast milk is digested in a slower, more controlled, process.

Currently, many neonatal intensive care units are moving towards formula-free environments, but breastfeeding a premature infant can be challenging or physically impossible and supplies of donor breast milk are limited. To meet the demand if insufficient breast milk is available, less cytotoxic milk replacements will need to be designed in the future that pose less risk for cell damage and for necrotizing enterocolitis, the researchers concluded.

This may be of benefit not only to premature infants, but also to full-term infants at higher risk for disorders that are associated with gastrointestinal problems and more leaky intestines, such as autism spectrum disorder. Dr. Sharon Taylor, a professor of pediatric medicine at UC San Diego School of Medicine and a pediatric gastroenterologist at Rady Children’s Hospital-San Diego, said the study offers more support to an already ongoing push by hospitals, including neonatal intensive care units, to encourage breastfeeding even in more challenging circumstances in the NICU. For patients who are too premature or frail to nurse, Dr. Taylor said hospital staff should provide consultation and resources to help mothers pump breast milk that can be fed to the baby through a tube.

The research was carried out in collaboration with Dr. Taylor, Karen Dobkins of the Department of Psychology, and Angelina Altshuler and James Small of the Department of Bioengineering at UC San Diego and was funded by the National Institutes of Health (NS071580 and GM85072).  The researchers conclude that breast milk has a significant ability to reduce cytotoxicity that formula does not have. One next step is to determine whether these results are replicated in animal studies and whether intervention can prevent free fatty acids from causing intestinal damage or death from necrotizing enterocolitis.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
Friday, May 27, 2016
New Technology is Life-Saving Voice for Premature Infants
Innovative monitoring system detects risk of infections up to 24 hours before symptoms appear.
Wednesday, May 11, 2016
Uncovering Hidden Genomic Alterations that Drive Cancers
Tested on large tumor genomics database, REVEALER method allows researchers to connect genomics to cell function.
Tuesday, April 19, 2016
Stem Cells Regenerate Damage in Corticospinal Injury
For the first time, researchers show functional benefit in animal model of key motor control system.
Friday, April 01, 2016
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
Thursday, November 19, 2015
Tiny Parasite May Have Big Impact on Honey Bees
Biologists at UC San Diego have discovered that a tiny single-celled parasite may have a greater-than expected impact on honey bee colonies.
Monday, June 01, 2015
Blood-Based Genetic Biomarkers Identify Young Boys with Autism
Proof-of-principle method suggests much-earlier diagnoses could be done with clinic test.
Wednesday, March 11, 2015
Anti-Leukemia Drug May Also Work Against Ovarian Cancer
An antibody therapy already in clinical trials to treat chronic lymphocytic leukemia (CLL) may also prove effective against ovarian cancer – and likely other cancers as well.
Wednesday, November 19, 2014
New Blood: Tracing the Beginnings of Hematopoietic Stem Cells
Researchers uncover earliest clues yet to development of cells that produce all adult blood cells.
Monday, August 18, 2014
New Reprogramming Method Makes Better Stem Cells
Researchers have shown for the first time that stem cells created using different methods produce differing cells.
Friday, July 04, 2014
Biologists Find ‘Missing Link’ in the Production of Protein Factories in Cells
Biologists at UC San Diego have found the “missing link” in the chemical system that enables animal cells to produce ribosomes.
Tuesday, June 24, 2014
Biologists Discover Solution to Problem Limiting Development of Human Stem Cell Therapies
An effective strategy that could prevent the human immune system from rejecting the hESCs derived grafts.
Tuesday, January 07, 2014
Researchers Develop Efficient Model for Generating Human Stem Cells
Approach has potential to simplify generation of iPSCs for use in human stem cell therapies.
Wednesday, August 07, 2013
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!