Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Analyzes the Effects of Antibiotics on the Gut Flora

Published: Thursday, January 10, 2013
Last Updated: Thursday, January 10, 2013
Bookmark and Share
A study co-led by researchers of the University of Valencia reveals that antibiotics produce changes in the microbial and metabolic patterns of the gut.

The researchers that have analyzed for the first time the bacteria, genes, enzymes and molecules that form the gut microbiota of patients treated with antibiotics publish the results of their study in the online edition of the journal ‘Gut’.

In the gut live one trillion bacteria, which are known as microbiota or gut flora, and that co-evolve in symbiosis with humans. According to this work, treatment with antibiotics can alter this symbiosis from early stages of the treatment.

“Although some of the changes are oscillatory and can be reversed at the end of the treatment, others seem irreversible”, said one of the coordinators of the study, Andrés Moya, who works at Cavanilles Institute of Biodiversity and Evolutionary Biology of the Science Park of the University of Valencia.

The research, which has had the collaboration of the CSIC, the Centre Superior d’Investigació en Salut Pública (CSISP) (Centre for Advanced Research in Public Health), the University CEU San Pablo and the Centre d’Investigació Biomèdica en Xarxa en Epidemiologia i Salut Pública (CIBEResp) (Centre for Biomedical Research in Epidemiology and Public Health), has compared stool samples of a patient taken before and after the treatment.

Changes in gut bacteria

The biodiversity of the bacteria that form the gut microbiota, according to the results, decreases during the treatment to the point of reaching its minimum 11 days after the beginning. However, at the end of the treatment, the situation is reversed and the patient presents a bacterial population similar to the first.

Although the research “shows for the first time that gut bacteria presents a lower capacity to produce proteins, as well as deficiencies in key activities, during and after the treatment”, explains Moya. Specifically, the study suggests that the gut microbiota shows less capacity to absorb iron and digest certain foods as well as to produce essential molecules for the organism.

The research also shows that less abundant bacteria in the gut flora, but little active at the beginning of the treatment, at the end they became active and they may play an important role in the gut as a consequence of the antibiotics, according to Manuel Ferrer, researcher of the CSIC. “These bacteria could be responsible for improving the interconnection between the liver and colon and of the production of essential molecules such as bile acids, hormones and cholesterol derivatives”, say the researchers.

“Only through a comprehensive and detailed analysis of the different antibiotics and people from different geographical origin, age or state of health, can be reached personalized therapies and interventions” concludes Moya.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!