Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Biolog's Phenotype MicroArray Technology Employed by the UK AHVLA

Published: Friday, January 11, 2013
Last Updated: Friday, January 11, 2013
Bookmark and Share
Technology enabled scientists to make breakthrough discoveries on the tuberculosis bacterium.

In a paper published today in the journal PLOS ONE, a  research team headed by Dr. Paul Wheeler from the Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge, UK) reported breakthrough progress in understanding the metabolic and phenotypic properties of the bacterium Mycobacterium tuberculosis and its close relative, Mycobacterium bovis.  Link to article:

Mycobacterum tuberculosis is the causative agent of the respiratory disease tuberculosis which infects an estimated 8 million people worldwide and is responsible for 2 million fatalities each year. Tuberculosis is a transmissible respiratory disease and as such represents a major problem and focus of public health efforts around the world.  Mycobacterium bovis afflicts cattle with losses to agriculture of approximately $3 billion per year. These mycobacteria have been very difficult for scientists to study, because they grow very slowly, so experiments can take weeks or months to perform.

The publication from the AHVLA is important in several respects. First, it shows that Biolog's Phenotype MicroArray™ (PM) technology allows these bacteria to be studied much more quickly and easily, which will accelerate the pace of mycobacterial research. Results can be obtained in 7 to 10 days. Second, it demonstrates diagnostic potential by phenotypically differentiating strains of these mycobacteria with different  host ranges and levels of pathogenicity. Third, the paper expands, as well as confirms, our knowledge of the metabolic properties of these mycobacteria. As a consequence, genome annotation can be improved, the biology of these bacteria can be better understood, and hopefully these insights will facilitate discovery of antibiotics more effective in their eradication.

According to Dr. Wheeler, "The genome sequence of Mycobacterium tuberculosis was published in 1998 and high-throughput phenotype analysis of pathogenic mycobacterial strains is urgently needed and long overdue. Molecular typing of Mycobacterium strains has limitations. Though key in surveillance and helpful in identifying emerging strains, it does not provide information on biological properties or phenotypes. This is a substantial gap in our knowledge since it is the phenotype which is selectable and must relate to the evolutionary advantage of one strain over another."

Other mycobacterial species have also been successfully studied with PM technology.  In June of this past year, researchers in the laboratory of Prof. Yung-Fu Chang at Cornell University College of Veterinary Medicine published also in PLOS ONE on their use of PM technology to analyze the metabolic phenotypes of Mycobacterium avium.  In 2009, a team of researchers in the laboratory of Prof. Lacy Daniels at Texas A&M, Kingsville used gene knockouts combined with PM technology to show that the Mycobacterium smegmatis gene homolog of the Mycobacterium tuberculosis gene Rv1238 codes for a transporter of the sugar trehalose and plays a critical role in pathogenicity. Additionally, in a paper just published January 4, 2013 online in the Journal of Bacteriology, Prof. Daniels' lab again analyzes the phenotypes of gene knockouts with PM technology to define the spectrum of antibiotics and antiseptics for mycobacterial efflux pumps. Antibiotic resistance is another focus of mycobacteria research.

Biolog PM technology has now enabled multiple important discoveries with mycobacteria. “We are thrilled that three laboratories have now successfully applied Biolog’s PM technology in pioneering research resulting in breakthrough discoveries” said Dr. Barry Bochner, CEO & CSO at Biolog, Inc. (Hayward, CA). “PM technology is designed to provide high throughput phenotyping and metabolic scanning of cells, making it a powerful complement to genotyping experiments.”

Phenotype MicroArray technology, initially developed with SBIR funding from NIH, is proving to be a cell profiling technology that can yield breakthrough discoveries. It allows scientists to study the growth properties and culture condition responses of bacterial, fungal, and even human cells. As such it is becoming a core technology for many cellular studies.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biolog’s PM Technology Unlocks Critical Clue in Understanding Autism
Discovery demonstrates advantage of metabolic over genetic screening.
Friday, June 07, 2013
Biolog Announces Appointment of Distributors in Europe
New distributors to cover sales and marketing of Biolog’s innovative product lines.
Thursday, September 27, 2012
Differentiation and Mutation Changes in Mammalian Cells of Shared Lineage Determined With Assay Method that Measures Multiple Energy-Producing Pathways
New simple tool enables a wide range of detailed Phenotypic analyses of human cells.
Thursday, March 31, 2011
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Gene Therapy Going Global with Portable Device
Portable 'gene therapy in a box' could make future cancer and HIV cures affordable in developing countries.
Preventing "Friendly Fire" in the Pancreas
Researchers inhibit process that leads to the body attacking its own insulin-producing cells.
3D-Printed Heart-On-A-Chip with Integrated Sensors
Researchers have created the first 3D-printed organ-on-a-chip with integrated sensors, paving the way for more complex, customizable devices.
Wrapping up the Genome
Researchers successfully package complete yeast genome using purified components, yielding new insights into genome mechanisms.
Drug Target for Triple-Negative Breast Cancer Found
A team of researchers led by UC San Francisco scientists has identified a new drug target for triple-negative breast cancer.
Precision Medicine Guiding Cancer Patients’ Chemotherapy Decision
New study finds doctors use genetic test to measure breast cancer recurrence risk, make tailored treatment recommendations.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos