Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Initial Draft of the Loblolly Pine Tree Genome Developed

Published: Friday, January 11, 2013
Last Updated: Friday, January 11, 2013
Bookmark and Share
Scientists released the initial draft genome sequence of the loblolly pine, an important conifer species that is used as a feedstock for biofuels and can aid in climate change mitigation. The announcement was made at the 2013 Plant and Animal Genome Conference in San Diego, California.

Researchers at the University of California-Davis, with funding from the U.S. Department of Agriculture (USDA), today released the initial draft genome sequence of the loblolly pine, an important conifer species that is used as a feedstock for biofuels and can aid in climate change mitigation. The announcement was made at the 2013 Plant and Animal Genome Conference in San Diego, California.

“Loblolly pine plays an important role in American forestry, and I am excited to announce that we now have a much-needed tool in unlocking the secrets of these trees,” said Sonny Ramaswamy, director of USDA’s National Institute of Agriculture (NIFA), which funded the research. “I look forward to our continued work with the University of California-Davis and their application of this new knowledge.”

NIFA awarded the $14.6 million grant to UC Davis in 2011. Dr. David Neale leads the 5-year project with collaboration from five other organizations. The team used the latest next-generation sequencing technology to generate 16 billion short sequence fragments, representing 60-fold coverage of the massive loblolly pine genome. Pine genomes are extremely large at 10 times the size of the human genome, making this assembly the largest ever successfully completed. The team generated roughly 1.2 trillion bases of DNA.

“USDA competitive grant programs, such as the Agriculture and Food Research Initiative and its predecessor the National Research Initiative, have made significant and important contributions in building the capacity and infrastructure of forest genomics research toward increasing the productivity and health of American forests,” Neale said. “Now, with the funding of pine genome sequences, forest tree breeders are poised to use modern breeding technologies that are already routine in agricultural crop and livestock breeding. These technologies will also be critical in maintaining adapted and healthy forests facing climate change.”

This draft assembly, which is being made publicly available through the team’s website, will provide a valuable resource for gene discovery while the project team prepares its analysis of the genome for publication. The data gained from the genome sequence could accelerate breeding efforts and enhance the tree’s use as a feedstock for biofuels and biopower.

“This is critical for the forest genetics community as the ability to accelerate breeding trees will produce healthier forests in light of climate change and increased disease and insect pressure,” said Dr. Jim Reaves, Forest Service Deputy Chief for Research and Development. The Forest Service’s Southern Research Station conserved and supplied the plant tissue for the project and provided quality control on the DNA samples that were sequenced.

Increased planting of fast growing varieties of loblolly pine and other agroforestry crops will also contribute to carbon sequestration and help to mitigate the effects of climate change.

Loblolly pine is the most economically important tree species in the United States. Southern pines provide 58 percent of the timber in the country and 15 percent globally. The native range of loblolly pine spans 14 states from southern New Jersey south to central Florida and west to Texas where it makes up more than half of the existing forest. It is likely the knowledge gained from this sequence will apply across much of the Pinaceae family, containing most of the commercially important conifers of the world.

UC Davis is joined by the following organizations on the 5-year Loblolly Pine Genome Project:  Children’s Hospital of Oakland Research Institute, Washington State University, Texas A&M University, Indiana University, Johns Hopkins University and the University of Maryland. The draft assembly was built using the MaSuRCA assembler developed at the University of Maryland and Johns Hopkins University, which was specifically modified to handle the very large amount of data generated by the project. The sequenced pine germplasm came from the North Carolina State University Cooperative Breeding Program and was produced by a mating made by the Virginia Department of Forestry.

The team is also currently working on sequencing a second important conifer species, sugar pine from California.

The award was made through NIFA’s Agriculture and Food Research Initiative (AFRI). AFRI is NIFA’s flagship competitive grant program and was established by the 2008 Farm Bill. AFRI supports work in six priority areas: 1) plant health and production and plant products; 2) animal health and production and animal products; 3) food safety, nutrition and health; 4) renewable energy, natural resources and environment; 5) agriculture systems and technology; and 6) agriculture economics and rural communities.

Through federal funding and leadership for research, education and extension programs, NIFA focuses on investing in science and solving critical issues impacting people's daily lives and the nation's future.  More information is available at: www.nifa.usda.gov.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!