Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Johns Hopkins Scientists Use Pap Test Fluid To Detect Ovarian, Endometrial Cancers

Published: Monday, January 14, 2013
Last Updated: Monday, January 14, 2013
Bookmark and Share
In a pilot study, the “PapGene” test, which relies on genomic sequencing of cancer-specific mutations, accurately detected 100 percentof endometrial cancers and (41 percent ovarian cancers.

The investigators note that larger-scale studies are needed before clinical implementation can begin, but they believe the test has the potential to pioneer genomic-based cancer screening tests.

The Papanicolaou (Pap) test, during which cells collected from the cervix are examined for microscopic signs of cancer, is widely and successfully used to screen for cervical cancers. However, no routine screening method is available for ovarian or endometrial cancers.

Since the Pap test occasionally contains cells shed from the ovaries or endometrium, cancer cells arising from these organs could be present in the fluid as well, says Luis Diaz, M.D., associate professor of oncology at Johns Hopkins, as well as director of translational medicine at the Ludwig Center for Cancer Genetics and Therapeutics and director of the Swim Across America Laboratory, also at Johns Hopkins. The laboratory is sponsored by a volunteer organization that raises funds for cancer research through swim events. “Our genomic sequencing approach may offer the potential to detect these cancer cells in a scalable and cost-effective way,” adds Diaz.

Cervical fluid of patients with gynecologic cancer carries normal cellular DNA mixed together with DNA from cancer cells, according to the investigators. The investigators’ task was to use genomic sequencing to distinguish cancerous from normal DNA.

The scientists had to determine the most common genetic changes in ovarian and endometrial cancers in order to prioritize which genomic regions to include in their test. They searched publicly available genome-wide studies of ovarian cancer, including those done by other Johns Hopkins investigators, to find mutations specific to ovarian cancer. Such genome-wide studies were not available for the most common type of endometrial cancer, so they conducted genome-wide sequencing studies on 22 of these endometrial cancers.

From the ovarian and endometrial cancer genome data, the Johns Hopkins-led team identified 12 of the most frequently mutated genes in both cancers and developed the PapGene test with this insight in mind.

The investigators then applied PapGene on Pap test samples from ovarian and endometrial cancer patients at The Johns Hopkins Hospital, Memorial Sloan-Kettering Cancer Center, the University of São Paulo in Brazil and ILSbio, a tissue bank. The new test detected both early- and late-stage disease in the endometrial and ovarian cancers tested. No healthy women in the control group were misclassified as having cancer.

The investigators’ next steps include applying PapGene on more samples and working to increase the test’s sensitivity in detecting ovarian cancer. “Performing the test at different times during the menstrual cycle, inserting the cervical brush deeper into the cervical canal, and assessing more regions of the genome may boost the sensitivity,” says Chetan Bettegowda, M.D., Ph.D., assistant professor of neurosurgery at Johns Hopkins and a member of the Ludwig Center as well.

Together, ovarian and endometrial cancers are diagnosed in nearly 70,000 women in the United States each year, and about one-third of them will die from it. “Genomic-based tests could help detect ovarian and endometrial cancers early enough to cure more of them,” says graduate student Yuxuan Wang, who notes that the cost of the test could be similar to current cervical fluid HPV testing, which is less than $100.

PapGene is a high-sensitivity approach for the detection of cancer-specific DNA mutations, according to the investigators; however, false mutations can be erroneously created during the many steps — including amplification, sequencing and analysis — required to prepare the DNA collected from a Pap test specimen for sequencing. This required the investigators to build a safeguard into PapGene’s sequencing method, designed to weed out artifacts that could lead to misleading test results.

“If unaccounted for, artifacts could lead to a false positive test result and incorrectly indicate that a healthy person has cancer,” says graduate student Isaac Kinde.

Kinde added a unique genetic barcode — a random set of 14 DNA base pairs — to each DNA fragment at an initial stage of the sample preparation process. Although each DNA fragment is copied many times before eventually being sequenced, all of the newly copied DNA can be traced back to one original DNA molecule through their genetic barcodes. If the copies originating from the same DNA molecule do not all contain the same mutation, then an artifact is suspected and the mutation is disregarded. However, bonafide mutations, which exist in the sample before the initial barcoding step, will be present in all of the copies originating from the original DNA molecule.

Funding for the research was provided by Swim Across America, the Commonwealth Fund, the Hilton-Ludwig Cancer Prevention Initiative, the Virginia & D.K. Ludwig Fund for Cancer Research, the Experimental Therapeutics Center of the Memorial Sloan-Kettering Cancer Center, the Chia Family Foundation, The Honorable Tina Brozman Foundation, the United Negro College Fund/Merck Graduate Science Research Dissertation Fellowship, the Burroughs Wellcome Career Award for Medical Scientists, the National Colorectal Cancer Research Alliance and the National Institutes of Health’s National Cancer Institute (N01-CN-43309, CA129825, CA43460).

In addition to Kinde, Bettegowda, Wang and Diaz, investigators participating in the research include Jian Wu, Nishant Agrawal, Ie-Ming Shih, Robert Kurman, Robert Giuntoli, Richard Roden and James R. Eshleman from Johns Hopkins; Nickolas Papadopoulos, Kenneth Kinzler and Bert Vogelstein from the Ludwig Center at Johns Hopkins; Fanny Dao and Douglas A. Levine from Memorial Sloan-Kettering Cancer Center; and Jesus Paula Carvalho and Suely Kazue Nagahashi Marie from the University of São Paulo.

Papadopoulos, Kinzler, Vogelstein and Diaz are co-founders of Inostics and Personal Genome Diagnostics. They own stocks in the companies and are members of their Scientific Advisory Boards.  Inostics and Personal Genome Diagnostics have licensed several patent applications from Johns Hopkins.  These relationships are subject to certain restrictions under The Johns Hopkins University policy, and the terms of these arrangements are managed by the university in accordance with its conflict-of-interest policies.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Create Light-Sensitive Retina in a Dish
Using a type of human stem cell, Johns Hopkins researchers say they have created a three-dimensional complement of human retinal tissue in the laboratory.
Tuesday, June 10, 2014
Neurons Grown From Embryonic Stem Cells Restore Function in Paralyzed Rats
The study provides a 'recipe' for using stem cells to reconnect the nervous system.
Wednesday, June 21, 2006
Scientific News
Study Finds Brain Chemicals that Keep Wakefulness in Check
Researchers to develop new drugs that promote better sleep, or control hyperactivity in people with mania.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!