Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A*STAR Scientists Discover Potential Drug for Deadly Brain Cancer

Published: Tuesday, January 15, 2013
Last Updated: Tuesday, January 15, 2013
Bookmark and Share
This discovery can potentially prevent the progression and relapse of deadly brain tumours.

A*STAR scientists have identified a biomarker of the most lethal form of brain tumours in adults - glioblastoma multiforme.

The scientists found that by targeting this biomarker and depleting it with a potential drug, they were able to prevent the progression and relapse of the brain tumour.

This research was conducted by scientists at A*STAR's Institute of Medical Biology led by Dr Prabha Sampath, Principal Investigator, in collaboration with A*STAR's Bioinformatics Institute (BII), and clinical collaborators from Medical University of Graz, Austria, and National University of Singapore.

The research findings were published on Aug 23 in the scientific journal, Cell Reports from Cell Press.

The scientists found that the biomarker, miR-138, is highly expressed in cancer stem cells compared to normal neural stem cells. They thus carried out in vitro experiments to deplete miR-138 in these cancer stem cells with a potential drug, antimiR-138, to observe the effect.

They found that when miR-138 is depleted, the cancer cells are completely destroyed. This is an important breakthrough as current therapies such as gamma radiation and surgical methods proved to be inadequate in treating these brain tumours, which tend to re-grow from cancer stem cells and become extremely lethal.

Dr Sampath said, "In this study we have identified a master regulator, miR-138, which is essential for the progression and relapse of a deadly form of brain cancer. By targeting this regulator we can effectively prevent the recurrence of this lethal form of cancer. This promising finding will pave the way for the development of a novel therapy to successfully treat the aggressive forms of brain cancer."

Studies were also done in mice to determine whether antimiR-138 could effectively inhibit the growth of tumours. These experiments were conducted with a control drug as well, revealing that tumours continued to be present when mice were injected with the control, while injection with the antimiR-138 showed no tumour growth after nine months.

Dr Alan Colman, Executive Director of Singapore Stem Cell Consortium and a Principal Investigator at IMB said, "Malignant gliomas are a particularly devastating and lethal form of human brain cancer. As with a growing number of other cancers, evidence is accumulating that the persistence and chemo-resistance of this cancer is due to the presence of glioma stem cells (GSCs). In this exciting publication, Sampath and colleagues indicate that in the tumours, these GSCs express the microRNA-138 (miR-138) and that the targeted elimination of this RNA markedly reduced the growth and survival of GSCs in cell culture. This work highlights the possible significance of miR-138 as a prognostic biomarker and also suggests miR-138 synthesis as a target for therapeutic intervention."

Prof Sir David Lane, Chief Scientist at A*STAR, added, "These findings will facilitate the translation of basic research into clinical applications such as targeted drug design to treat brain cancer. This is an excellent example of how A*STAR's impactful research can be applied to develop treatments for diseases like cancer."

Dr Sampath was a recipient of the A*STAR Investigatorship Award in 2007, a prestigious research award designed to attract the most promising young researchers from around the world to do independent research at A*STAR.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Advancing the Understanding and Research of Botulinum Neurotoxin Biology
Ipsen and the Institute of Molecular and Cell Biology (IMCB) announce the signature of a research partnership to study the intracellular trafficking of botulinum neurotoxins (BoNTs) within neurons.
Monday, May 16, 2016
A*STAR Findings on Breast Cancer Hold Potential for New Treatments
Computational techniques to increase understanding of diseases and improve patient treatments.
Friday, October 30, 2015
Rapid Test Kit Detects Dengue Antibodies from Saliva
IBN’s MedTech innovation simplifies diagnosis of infectious diseases.
Friday, January 30, 2015
A*STAR Scientists Discover Gene Critical for Proper Brain Development
This gene accounts for the size of the human brain and potentially our superior cognitive abilities.
Friday, December 26, 2014
A Gold Catalyst for Clear Water
Mixed nanoparticle systems may help purify water and generate hydrogen.
Wednesday, December 24, 2014
Anti-Diabetic Drug Springs New Hope for Tuberculosis Patients
Drug for treating diabetes can double up as adjunct treatment for tuberculosis.
Wednesday, December 17, 2014
Gene Associated with an Aggressive Breast Cancer Identified
Over-expressed gene in triple negative breast cancer offers new diagnostics for risk assessment.
Wednesday, December 03, 2014
Diagnostics Development Hub To Complement Biomed Research Launched
Hub will leverage strategic public-public and public-private partnerships to accelerate market readiness of locally developed diagnostic products.
Friday, November 28, 2014
Protecting the Body from Itself
Scientists advance understanding of autoimmunity with discovery of link between major immune cell types.
Friday, September 26, 2014
Colorful Nanoprobes Make A Simple Test
Gold nanoparticles linked to single-stranded DNA create a simple but versatile genetic testing kit.
Thursday, September 25, 2014
Lab on a Breathing Chip
Human nasal epithelial cells, cultured on a microchip, react to air pollutants just like they would in the upper airway.
Saturday, September 13, 2014
Understanding and Improving the Body's Fight Against Pathogens
A*STAR scientists find new targets for modulating antibody response.
Tuesday, September 02, 2014
Novel Gene Predicts Both Breast Cancer Relapse and Response to Chemotherapy
A predictive marker discovered by scientists at A*STAR and NUS could help doctors classify breast cancer patients for more effective treatment.
Thursday, August 21, 2014
High Capacity Antibody Purification
Researchers from the A*Star Bioprocessing Technology Institute have used magnetic nanoparticles to break the capacity barrier for antibody purification.
Sunday, August 17, 2014
New Tool to Study Critical Protein Interaction in Cancer Research
A*STAR scientists used fluorescent molecular rotors to study protein-protein interactions involving p53 and MDM2 in cells.
Thursday, July 03, 2014
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Developing a More Precise Seasonal Flu Vaccine
During the 2014-15 flu season, the poor match between the virus used to make the world’s vaccine stocks and the circulating seasonal virus yielded a vaccine that was less than 20 percent effective.
A Peachy Defense System for Seeds
ETH chemists are developing a new coating method to protect seeds from being eaten by insects. In doing so, they have drawn inspiration from the humble peach and a few of its peers.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!