Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Epigenomic Abnormalities Predict Patient Survival in Non-Hodgkins Lymphoma

Published: Wednesday, January 16, 2013
Last Updated: Wednesday, January 16, 2013
Bookmark and Share
University of Colorado Cancer Center looks into how epigenetics could be used to control cancer.

A University of Colorado Cancer Center study published today in the journal PLOS GENETICS shows that in cancer, not only can genes themselves go bad, but abnormal changes in the epigenetic mixing board can unfortunately change the expression of these genes. Researchers hope to play the role of sound engineers, controlling these harmful epigenomic changes to turn down cancer itself or perhaps sensitize cancers to existing drugs.

The epigenome’s primary tool – and by far the easiest to study – is methylation: it attaches little methyl groups to DNA sequences near the genes to silence or promote their expression.

“Not only do we see more abnormal methylation in non-Hodgkin lymphoma patients than in healthy B-cell populations, but there are three distinct subtypes of the disease in the clinic, each more aggressive than the next. These three clinical trajectories of non-Hodgkins lymphoma were distinctly marked by their levels of abnormal methylation,” says Subhajyoti De, PhD, CU Cancer Center investigator and assistant professor at the CU School of Medicine.

In other words, methylation patterns predict patient survival. Here’s how it works:

DNA should be methylated in a consistent way – you get a certain, standardized amount of methyl “residue” attached to your genes. Sure enough, that’s the case in healthy B-cells. Subhajyoti and colleagues show that in cancerous B-cells, the level of DNA methylation from cell to cell varies wildly. And the more wildly the level of DNA methylation varies, the more aggressive is the cancer. It’s as if, in the body, you want a consistent epigenome that maintains the methylation of the healthy status quo –when a willy-nilly epigenome drops methylation randomly here and there, it promotes non-normal cells, like cancer.

So abnormal methylation is certainly correlated with not only cancer, but with the aggressive behaviors of cancer subtypes. But what exactly is the functional role of this methylation?

“We think that in addition to genetic mutations that cause cancer, epigenetic changes probably play a subtle role that allows the cancer to thrive within our body,” Subhajyoti says.

There are drugs that affect the epigenome’s ability to methylate and so control genes – some of which crescendo or decrescendo the amount of methylation across the board, and some of which affect the amount of methylation on certain genetic products. Does one of these drugs hold the key to muting cancer?

Subhajyoti hopes to find out.

“For the last 50 years, the scientific community pushed to identify the genetic drivers of cancer, but now in the past five or six years we’ve expanded the search into the epigenome as well,” Subhajyoti says. “We now expect to find that both genetic and epigenetic abnormalities are important for initiation and maintenance of cancer.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Reprogramming Stem Cells May Prevent Cancer After Radiation
Study published in the journal Stem Cells.
Tuesday, January 06, 2015
microRNA Cooperation Mutes Breast Cancer Oncogenes
Turning up a few microRNAs a little may offer as much anti-breast-cancer activity as turning up one microRNA a lot – and without the unwanted side effects.
Friday, May 10, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos