Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Possible Role for Huntington’s Gene Discovered

Published: Wednesday, January 16, 2013
Last Updated: Wednesday, January 16, 2013
Bookmark and Share
Mutant forms of the gene disrupt chemical modifications that control access to genes necessary for normal brain cell function.

About 20 years ago, scientists discovered the gene that causes Huntington’s disease, a fatal neurodegenerative disorder that affects about 30,000 Americans. The mutant form of the gene has many extra DNA repeats in the middle of the gene, but scientists have yet to determine how that extra length produces Huntington’s symptoms.

In a new step toward answering that question, MIT biological engineers have found that the protein encoded by this mutant gene alters patterns of chemical modifications of DNA. This type of modification, known as methylation, controls whether genes are turned on or off at any given time.

The mutant form of this protein, dubbed “huntingtin,” appears to specifically target genes involved in brain cell function. Disruptions in the expression of these genes could account for the neurodegenerative symptoms seen in Huntington’s disease, including early changes in cognition, says Ernest Fraenkel, an associate professor of biological engineering at MIT.

Fraenkel’s lab is now investigating the details of how methylation might drive those symptoms, with an eye toward developing potential new treatments. “One could imagine that if we can figure out, in more mechanistic detail, what’s causing these changes in methylation, we might be able to block this process and restore normal levels of transcription early on in the patients,” says Fraenkel, senior author of a paper describing the findings in this week’s issue of the Proceedings of the National Academy of Sciences.

Lead author of the paper is Christopher Ng, an MIT graduate student in biological engineering. Other authors are MIT postdoc Ferah Yildirim; recent graduates Yoon Sing Yap, Patricio Velez and Adam Labadorf; technical assistants Simona Dalin and Bryan Matthews; and David Housman, the Virginia and D.K. Ludwig Professor of Biology.

Unexpected patterns

DNA methylation has a major impact on genetic expression: Genes that are methylated at particular sites are usually dormant, because the methyl groups deny access to the proteins needed to copy DNA’s instructions and carry them to the rest of the cell. For a long time, scientists believed that DNA methylation patterns changed during embryonic development and then remained constant in adulthood. However, DNA methylation is emerging as important to a wide range of normal cell activity.

In the new study, the MIT team measured changes in methylation patterns during early stages of Huntington’s disease in cells derived from a brain region called the striatum in mouse embryos. This region, where planning of movement occurs, is severely affected by Huntington’s disease.

“We’re very interested in the earliest phases, because that’s when there’s the most hope that you could either slow down or stop progression of the disease, and allow people to live healthy lives much longer,” Fraenkel says. “By the time there is much more severe neurodegeneration, it’s unlikely that you’re going to be able to reverse the damage.”

Fraenkel and Ng were surprised to find a dramatic difference in methylation patterns between cells with normal and mutant forms of the huntingtin protein. Some genomic sites gained methylation, while others lost it. Many of the affected sites were in regions that regulate the expression of nearby genes necessary for neuron growth and survival.

Turning genes off and on

After observing the changing methylation patterns, the MIT team identified many proteins that tend to bind to the DNA sites where those changes take place. These proteins include Sox2 and others known to regulate genes involved in neuronal activity, including growth of the neurons.

The new findings go a long way toward explaining how the extra DNA repeats in the mutant form of the huntingtin gene might bring about disease, says Mark Mehler, a professor of neurology at the Albert Einstein College of Medicine. “People have not had a good sense, until this paper, of what these repeats might be doing,” says Mehler, who was not part of the research team. “What this study has done is demonstrated a mechanism by which expanded repeats can alter gene expression.”

The researchers are now studying whether huntingtin affects other modifications of DNA and histones, the proteins around which DNA is wound. Together, these might cause genes to be turned on or off inappropriately, Fraenkel says.

The researchers are also working with mouse models at different stages of Huntington’s disease to track how the methylation patterns change as the disease progresses. “That also gives us an opportunity to do interventions and test whether affecting particular proteins influences the progression of the disease,” Fraenkel says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Wednesday, April 27, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Monday, April 04, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Why Some Tumors Withstand Treatment
Mechanism uncovered that allows cancer cells to evade targeted therapies.
Thursday, March 17, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
MIT Study: Carbon Tax Needed to Cut Fossil Fuel Consumption
Researchers at MIT have suggested that the technology-driven cost reductions in fossil fuels will lead the world to continue using all the oil, gas, and coal, unless governments pass new taxes on carbon emissions.
Thursday, February 25, 2016
Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
Wednesday, February 03, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
Living a “Mixotrophic” Lifestyle
Some tiny plankton may have big effect on ocean’s carbon storage.
Tuesday, February 02, 2016
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
Friday, January 29, 2016
No More Insulin Injections?
Encapsulated pancreatic cells offer possible new diabetes treatment.
Tuesday, January 26, 2016
Engineering Foe into Friend
Bose Grant awardee Jacquin Niles aims to repurpose the malaria parasite for drug delivery.
Monday, January 25, 2016
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!