Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Team Discovers Structure of Protein Essential for Quality Control, Nerve Function

Published: Monday, January 21, 2013
Last Updated: Monday, January 21, 2013
Bookmark and Share
Scientists at The Scripps Research Institute have determined the structure of Ltn1, a recently discovered “quality-control” protein that is found in the cells of all plants, fungi and animals.

Ltn1 appears to be essential for keeping cells’ protein-making machinery working smoothly. It may also be relevant to human neurodegenerative diseases, for an Ltn1 mutation in mice leads to a motor-neuron disease resembling amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease). 

“To better understand Ltn1’s mechanism of action, we needed to solve its structure, and that’s what we’ve done here,” said The Scripps Research Institute (TSRI) Associate Professor Claudio Joazeiro. 

“In addition, this project has brought us a set of structural analysis techniques that we can apply to other exciting problems in biology,” said TSRI Professor Bridget Carragher.

Joazeiro and Carragher, along with Clint Potter, also a TSRI professor, are senior authors of the new report, which appears in the online Early Edition of the Proceedings of the National Academy of Sciences the week of January 14, 2013.

Links to Neurodegenerative Disease 
Ltn1 first turned up on biologists’ radar screens several years ago when a joint Novartis-Phenomix research team noted that mice with an unknown gene mutation were born normal but suffered from progressive paralysis. The scientists dubbed the animals lister mice, because they listed to one side as they walked. Collaborating with Joazeiro, the Novartis team reported in a 2009 paper that the mutated gene normally codes for a type of enzyme known as an E3 ubiquitin ligase, and that the mouse phenotype was due to a neurodegenerative syndrome resembling ALS.

In a study published in the journal Nature the following year, Joazeiro and his postdoctoral research associate Mario H. Bengtson found that the enzyme serves as a crucial quality-control manager for the cellular protein-making factories called ribosomes. Occasionally a ribosome receives miscoded genetic instructions and produces certain types of abnormal proteins, known as “nonstop proteins”— jamming the ribosomal machinery like a wrinkled sheet of paper in an office printer. Bengtson and Joazeiro found that Ltn1 fixes jammed ribosomes by tagging nonstop proteins with ubiquitin molecules, thereby marking them for quick destruction by roving cellular garbage-disposers called proteasomes. 

“The question for us then was, “How does Ltn1 do this?’ ” said Joazeiro. 

Pushing the Boundaries of Electron Microscopy
To help find out, he began a collaboration with Carragher and Potter, who run the National Resource for Automated Molecular Microscopy (NRAMM), an advanced electron microscope facility at TSRI that is funded by the National Institutes of Health’s National Center for Research Resources.

Ltn1 was deemed too large for its structure to be determined by current nuclear magnetic resonance (NMR) technology, and, as the scientists know now, too flexible to allow the highly regular crystalline packing needed by X-ray crystallographers. “It’s a very floppy molecule, so it would be hard to crystallize,” said Potter. 

Advanced electron microscopy offered a way, however. Dmitry Lyumkis, a graduate student in the NRAMM laboratory and first author of the study, took high-resolution images of yeast Ltn1 with an electron microscope. He then used sophisticated image and data processing software to align and average individual images. The technique eliminates much of the random “noise” that obscures single images and produces a sharp 3D picture of the protein.

No one has ever used electron microscopy to distinguish so many—more than 20—conformations of such a small protein. “Usually electron microscopists determine no more than two or three conformational states, and they work with protein complexes whose size is in the megadalton range, but Ltn1 is only 180 kilodaltons, an order of magnitude smaller,” Lyumkis said.

An Unusually Flexible Structure
The analysis revealed that Ltn1 has an elongated, double-jointed and extraordinarily flexible structure with two working ends—the N-terminus and C-terminus. “We anticipate that the N-terminus is responsible for association with the ribosome and know that the C-terminus is responsible for the ubiquitylation of nonstop proteins,” said Lyumkis. “We suspect that the high flexibility of this structure is needed for it to work on the variety of nonstop proteins that can get stuck in ribosomes.”

One of the next steps for the team is to evaluate Ltn1’s individual segments, which appear to be more rigid, using X-ray crystallography, in order to develop a piece-by-piece atomic-resolution model of the enzyme. Another is to determine the structure of Ltn1 when it is attached to a ribosome and operating on a nonstop protein. Joazeiro notes that a typical yeast cell has nearly 200,000 ribosomes but requires only 200 Ltn1 copies for adequate quality control under normal growth conditions. “Somehow this enzyme can efficiently sense which ribosomes are jammed, and we expect that by solving the joint structure of Ltn1 and a ribosome, we’ll be able to understand how it does this,” he says.

Lyumkis, Carragher, Potter and their colleagues at NRAMM also plan to use a similar electron microscopy-based approach to find the structures of other important proteins with highly variable “heterogeneous” conformations. “Heterogeneity has been a big challenge,” said Potter, “and being able to collect this large dataset and do all of this data processing successfully has been a critical breakthrough.”

Other contributors to the paper, “Single-particle EM reveals extensive conformational variability of the Ltn1 E3 ligase,” were Selom K. Doamekpor and Christopher D. Lima at the Sloan–Kettering Institute; Tasha B. Toro and Matthew D. Petroski of the Sanford-Burnham Medical Research Institute; and Mario H. Bengtson and Joong-Won Lee of TSRI. For more information on the paper, see http://intl.pnas.org/content/early/2013/01/10/1210041110.abstract.

The study was supported by grants from the National Center for Research Resources (RR017573); the National Institute of General Medical Sciences (GM103310); the National Institutes of Health (R01 GM083060, R01 NS075719, GM061906); and the American Cancer Society (RSG-11-224-01-DMC, RSG-08-298-01-TBE).


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Make Strides in Therapy Preventing Addiction Relapse
Single Injection of Drug Candidate Prevents Meth Relapse in Animal Models.
Thursday, August 06, 2015
New Antibody Weapons Against Marburg Virus
A study has identified new immune molecules that protect against deadly Marburg virus, a relative of Ebola virus.
Tuesday, June 30, 2015
Team Led by TSRI Scientists Shows AIDS Vaccine Candidate Successfully ‘Primes’ Immune System
New research shows that an experimental vaccine candidate can stimulate immune activity necessary to prevent HIV infection.
Thursday, June 25, 2015
New Details of Potential Alzheimer’s Treatment Uncovered
Scientists from Florida’s Scripps Resarch Institute have uncovered suprising new details of potential Alzheimer’s treatment.
Wednesday, April 29, 2015
Search for Cancer Drug Candidates
Scripps Florida scientists awarded $1.2 million to find drug candidates that could treat a wide range of cancers.
Friday, April 10, 2015
Scripps Florida Scientists Win $1.5 Million Grant to Develop New Cancer Drugs
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded a $1.5 million grant from the National Institutes of Health (NIH) to develop drug candidates that could treat cancer and neurodegenerative disease.
Tuesday, March 24, 2015
Day-Night Cycles Linked to Mutations
TSRI scientists show that proteins critical in day-night cycles also protect cells from mutations.
Friday, March 13, 2015
More DNA & Extra Copies of Disease Gene in Alzheimer’s Brain Cells
Scientists at The Scripps Research Institute (TSRI) have found diverse genomic changes in single neurons from the brains of Alzheimer’s patients, pointing to an unexpected factor that may underpin the most common form of the disease.
Tuesday, February 24, 2015
Possible Neuron Killing Mechanism Behind Alzheimer’s and Parkinson’s Diseases Discovered
$1.4 million grant will enable team to follow up with search for drug candidates.
Tuesday, February 17, 2015
Microbes Prevent Malnutrition in Fruit Flies—and Maybe Humans, Too
Study shows that microbes play a critical role in nutritional disorders.
Friday, February 13, 2015
New Targets and Test to Develop Treatments for Memory Disorders
The study focuses on kinesin, a molecular motor protein that plays a role in the transport of other proteins throughout a cell.
Thursday, November 13, 2014
MS Drug Candidate Shows Promise for Ulcerative Colitis
Positive new clinical data were released today on a drug candidate for ulcerative colitis that was first discovered and synthesized at The Scripps Research Institute.
Thursday, October 30, 2014
New Technique has Profound Implications for Drug Development
The method, developed by Scripps Research Institute chemists, expands options for making pure batches of ‘one-handed’ molecules.
Thursday, October 30, 2014
Scripps Research Institute Scientists Capture Picture of 'MicroRNA' in Action
The Findings Will Help Guide Drug Design.
Thursday, October 30, 2014
Enzyme Could Help Explain Origins of Life
Mimicking natural evolution in a test tube, scientists at The Scripps Research Institute (TSRI) have devised an enzyme with a unique property that might have been crucial to the origin of life on Earth.
Wednesday, October 29, 2014
Scientific News
Health Risks of Saturated Fats Aggravated by Immune Response
Research shows that the presence of saturated fats resulted in monocytes migrating into the tissues of vital organs.
Changing the Biological Data Visualisation World
Scientists at TGAC, alongside European partners, have created a cutting-edge, open source community for the life sciences.
NIH Study Finds Calorie Restriction Lowers Some Risk Factors for Age-Related Diseases
Two-year trial did not produce expected metabolic changes, but influenced other life span markers.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!