Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Learning the Alphabet of Controlling Gene Expression

Published: Monday, January 21, 2013
Last Updated: Monday, January 21, 2013
Bookmark and Share
Scientists at Karolinska Institutet have made a large step towards the understanding of how human genes are regulated.

In a new study, published in the journal Cell, they identified the DNA sequences that bind to over four hundred proteins that control expression of genes. This knowledge is required to understand how differences in genomes of individuals affect their risk to develop disease.

After the human genome was sequenced in 2000, it was hoped that the knowledge of the entire sequence of human DNA could rapidly be translated to medical benefits such as novel drugs, and predictive tools that would identify individuals at risk of disease. This, however, turned out to be harder than anticipated, one of the reasons being that only 1 percent of the genome that code for proteins was in fact possible to read. The remaining part, much of which describes how these proteins should be expressed in different cells and tissues, could not be understood. This, in turn, because the scientists did not know which DNA sequences are functional, and bind to the specific proteins called transcription factors that regulate gene expression.

"The genome is like a book written in a foreign language, we know the letters but cannot understand why a human genome makes a human or the mouse genome a mouse", says Professor Jussi Taipale, who led the study at the Department of Biosciences and Nutrition. "Why some individuals have higher risk to develop common diseases such as heart disease or cancer has been even less understood."

The human genome encodes approximately 1000 transcription factors, and they bind specifically to short sequences of DNA, and control the production of other proteins. In the work published in Cell, the scientists at Karolinska Institutet describe DNA sequences that bind to over 400 such proteins, representing approximately half of all human transcription factors. Data was generated with a new method that uses a modern DNA sequencer that produces hundreds of millions of sequences, giving the results unprecedented accuracy and reliability.

In addition, binding specificities of human transcription factors were compared to those of the mouse. Surprisingly, no differences were found. According to the scientists, these results suggest that the basic machinery of gene expression is similar in humans and mice, and that the differences in size and shape are caused not by differences in transcription factor proteins, but by presence or absence of the specific sequences that bind to them.

"Taken together, the work represents a large step towards deciphering the code that controls gene expression, and provides an invaluable resource to scientists all over the world to further understand the function of the whole human genome", says Professor Taipale.  The resulting increase in our ability to read the genome will also improve our ability to translate the rapidly accumulating genomic information to medical benefits.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
Tuesday, September 27, 2016
Why Pneumococci Primarily Affects Human
A sugar molecule variant may explain why pneumococcal infections occur more frequently in humans compared to other animals.
Monday, September 05, 2016
A New Method Simplifies Blood Biomarker Discovery And Analysis
Scientists at Karolinska Institutet in collaboration with Estonian Competence Centre on Health Technologies have developed a new gene expression analysis method to widen the usage of blood in biomarker discovery and analysis.
Tuesday, August 16, 2016
Insights into Early Human Embryo Development
Researchers at Karolinska Institutet and the Ludwig Cancer Research in Stockholm have conducted a detailed molecular analysis of the embryo’s first week of development.
Monday, April 11, 2016
Complex Grammar of the Genomic Language
A new study from Karolinska Institutet shows that the ‘grammar’ of the human genetic code is more complex than that of even the most intricately constructed spoken languages in the world.
Thursday, November 12, 2015
New Mechanism Discovered Behind Infant Epilepsy
Scientists at Karolinska Institutet and Karolinska University Hospital have discovered a new explanation for severe early infant epilepsy.
Monday, September 07, 2015
Stem Cells from Nerves Forming Teeth
Findings published in the scientific journal Nature.
Wednesday, July 30, 2014
Different Cell Mechanisms Behind Regenerated Limbs
Scientists at Karolinska Institutet have discovered that two separate species of salamander differ in the way their muscles grow back in lost body parts.
Tuesday, November 26, 2013
New European Vaccine Initiative
Leading organisations have joined forces to rapidly assess and communicate the benefits and risks of vaccines.
Tuesday, November 26, 2013
Synthetic mRNA can Induce Self-Repair and Regeneration of the Infarcted Heart
A team of scientists has instructing injured hearts in mice to heal by expressing a factor that triggers cardiovascular regeneration driven by native heart stem cells.
Monday, September 16, 2013
Technological Breakthrough Paves the Way for Better Drugs
Researchers have developed the first method for directly measuring the extent to which drugs reach their targets in the cell.
Monday, July 08, 2013
Possible Goal for New Tuberculosis-Vaccine Identified
A new study shows for the first time the essential role of the molecule SOCS3 in the control of Tuberculosis.
Monday, July 08, 2013
Trackable Drug-Filled Nanoparticles - a Potential Weapon against Cancer
Tiny particles filled with a drug could be a new tool for treating cancer in the future.
Monday, March 04, 2013
New Hope for Setback-dogged Cancer Treatment
Researchers at Karolinska Institutet announce breakthrough in the study of how IGF-1 receptor-binding antibodies can help those with cancer.
Wednesday, November 28, 2012
The 2012 Nobel Prize in Physiology or Medicine
The Nobel Assembly at Karolinska Institutet has decided to award the Nobel Prize jointly to John B. Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent.
Tuesday, October 09, 2012
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Charles River Acquires Agilux
Enhances Charles River’s early-stage capabilities in bioanalytical services.
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
‘Cellbots’ Chase Down Cancer, Deliver Drugs Directly to Tumors
Programmable T cells shown to be versatile, precise, and powerful in lab studies.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!