Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Hamilton Robotics Revolutionizes Automated Biological Sample Card Punching with the easyPunch STARlet System

Published: Tuesday, January 22, 2013
Last Updated: Tuesday, January 22, 2013
Bookmark and Share
Hamilton Robotics in collaboration with GE Healthcare Life Sciences introduces the easyPunch STARlet™ workstation, the first fully automated system integrating sample card punching and liquid handling into one easy workflow.

The easyPunch STARlet system, manufactured in Hamilton’s Bonaduz, Switzerland facility, seamlessly integrates punching of GE Healthcare Whatman FTATM and DMPK sample collection cards with automated sample extraction, eliminating common bottlenecks in laboratory processes. The system minimizes human error and enables high-throughput sample preparation for a variety of applications, such as forensic reference databasing as well as pre-clinical and clinical drug metabolism and pharmacokinetics (DMPK) and toxicology studies.

“Because many labs lack a fully automated workflow, thousands of samples such as blood and saliva placed on punch cards are waiting long periods to be processed for critical studies and forensic analysis,” says Stefan Mauch, Product Manager of the easyPunch STARlet system. "Until now, sample card punching for analysis preparation required tedious manual work or separate semi-automated instruments and an operator. Researchers or technicians had to be consistently precise and experienced when handling and tracking samples, or the results could be compromised.”
 
The easyPunch workstation is based on the Hamilton Robotics Microlab® STARlet platform and features two special modules and robotic arms for transporting and punching paper cards. The samples are monitored by powerful tracking software to eliminate any chance of sample identification errors. The entire process is tracked using imaging recognition. Hamilton’s proprietary software, based on industrial machine vision technology, provides complete control and monitoring of the punching process. The software recognizes the position and size of the card, identifies the sample by reading the barcode, and determines the punch area. The workstation also takes a picture of the target well to ensure the punch has arrived in the designated well.

Compatibility with library information management systems (LIMS) and full traceability ensure that data can be linked confidently to each sample. The modular nature of the system enables integration of other devices, such as a centrifuge and a plate sealer, thus potentially integrating the entire workflow.

“Ease of use makes this workstation an attractive solution for repetitive tasks in forensic and biopharma sample handling,” says Navjot Kaur, Product Manager at Hamilton Robotics in Reno, Nevada. “Currently technicians manually clean between samples, but the easyPunch STARlet system performs this step automatically, reducing cross-contamination. Barcode reading and imaging support full traceability and reporting of samples, both during punching and downstream processing.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Hamilton Storage Technologies Opens 52,000-Square-Foot Facility in Franklin, Massachusetts
Innovative open floor plan helps life science business address growing market demands.
Tuesday, January 22, 2013
Hamilton Robotics and French Police Scientifique Publish Paper Describing Large-Scale Production of Genetic Profiles
More than 300,000 profiles have already been processed on the Hamilton platforms and stored in French Database.
Wednesday, March 10, 2010
Hamilton Star Liquid Handler Installation at the Diamond Light Source MPL Laboratory
Hamilton Robotics has installed a STAR liquid handler at the commissioned Membrane Protein Crystallography Laboratory at the Diamond Light Source near Didcot in Oxfordshire.
Monday, June 11, 2007
Automation of Adherent Cell Culture Maintenance
Hamilton, Life & Brain and University of Bonn will jointly develop a system for the automated culture of primary cells, cell lines and embryonic stem cells.
Monday, May 14, 2007
Introduction of an Anti Droplet Control Pipette
HAMILTON introduces ADC, for pipetting volatile organic solvents, with pressure sensors in the pipetting channel to monitor each pipetting step.
Monday, December 11, 2006
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!