Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Hamilton Robotics Revolutionizes Automated Biological Sample Card Punching with the easyPunch STARlet System

Published: Tuesday, January 22, 2013
Last Updated: Tuesday, January 22, 2013
Bookmark and Share
Hamilton Robotics in collaboration with GE Healthcare Life Sciences introduces the easyPunch STARlet™ workstation, the first fully automated system integrating sample card punching and liquid handling into one easy workflow.

The easyPunch STARlet system, manufactured in Hamilton’s Bonaduz, Switzerland facility, seamlessly integrates punching of GE Healthcare Whatman FTATM and DMPK sample collection cards with automated sample extraction, eliminating common bottlenecks in laboratory processes. The system minimizes human error and enables high-throughput sample preparation for a variety of applications, such as forensic reference databasing as well as pre-clinical and clinical drug metabolism and pharmacokinetics (DMPK) and toxicology studies.

“Because many labs lack a fully automated workflow, thousands of samples such as blood and saliva placed on punch cards are waiting long periods to be processed for critical studies and forensic analysis,” says Stefan Mauch, Product Manager of the easyPunch STARlet system. "Until now, sample card punching for analysis preparation required tedious manual work or separate semi-automated instruments and an operator. Researchers or technicians had to be consistently precise and experienced when handling and tracking samples, or the results could be compromised.”
 
The easyPunch workstation is based on the Hamilton Robotics Microlab® STARlet platform and features two special modules and robotic arms for transporting and punching paper cards. The samples are monitored by powerful tracking software to eliminate any chance of sample identification errors. The entire process is tracked using imaging recognition. Hamilton’s proprietary software, based on industrial machine vision technology, provides complete control and monitoring of the punching process. The software recognizes the position and size of the card, identifies the sample by reading the barcode, and determines the punch area. The workstation also takes a picture of the target well to ensure the punch has arrived in the designated well.

Compatibility with library information management systems (LIMS) and full traceability ensure that data can be linked confidently to each sample. The modular nature of the system enables integration of other devices, such as a centrifuge and a plate sealer, thus potentially integrating the entire workflow.

“Ease of use makes this workstation an attractive solution for repetitive tasks in forensic and biopharma sample handling,” says Navjot Kaur, Product Manager at Hamilton Robotics in Reno, Nevada. “Currently technicians manually clean between samples, but the easyPunch STARlet system performs this step automatically, reducing cross-contamination. Barcode reading and imaging support full traceability and reporting of samples, both during punching and downstream processing.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Hamilton Storage Technologies Opens 52,000-Square-Foot Facility in Franklin, Massachusetts
Innovative open floor plan helps life science business address growing market demands.
Tuesday, January 22, 2013
Hamilton Robotics and French Police Scientifique Publish Paper Describing Large-Scale Production of Genetic Profiles
More than 300,000 profiles have already been processed on the Hamilton platforms and stored in French Database.
Wednesday, March 10, 2010
Hamilton Star Liquid Handler Installation at the Diamond Light Source MPL Laboratory
Hamilton Robotics has installed a STAR liquid handler at the commissioned Membrane Protein Crystallography Laboratory at the Diamond Light Source near Didcot in Oxfordshire.
Monday, June 11, 2007
Automation of Adherent Cell Culture Maintenance
Hamilton, Life & Brain and University of Bonn will jointly develop a system for the automated culture of primary cells, cell lines and embryonic stem cells.
Monday, May 14, 2007
Introduction of an Anti Droplet Control Pipette
HAMILTON introduces ADC, for pipetting volatile organic solvents, with pressure sensors in the pipetting channel to monitor each pipetting step.
Monday, December 11, 2006
Scientific News
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
How Skeletal Stem Cells Form The Blueprint Of The Face
USC researchers discover that two types of molecular signals work to control where and when stem cells turn into facial cartilage.
Intestinal Worms Boost Immune System In A Surprising Way
EPFL researchers find that intestinal worm infections cause lymph nodes to produce more immune cells as well as grow in size.
Measuring The Airborne Toxicants Urban Bicyclists Inhale
Researchers analyze breath biomarkers to measure uptake of volatile organic compounds by bicyclists.
Breast Milk Hormones Impact Bacteria In Infants’ Guts
Intestinal microbiome of children born to obese mothers significantly different from those born to mothers of healthy weight, CU Anschutz researchers find.
Newborn Screening Test Developed For Rare, Deadly Neurological Disorder
Scientists have developed a new dried blood spot screening test for Niemann-Pick type C, with goal to speed diagnosis and treatment.
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
New Method Allows First Look At Embryo Implantation
Researchers at The Rockefeller University develop a method that shows the molecular and cellular processes that occur up to day 14 after fertilization.
Shining A Light On Bladder Cancer
Researchers scrutinize patterns of mutations in bladder tumor genomes, gleaning insights into the roles of DNA repair and tobacco-related DNA damage.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!