Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Hamilton Robotics Safeguards Precious Blood Transfers

Published: Tuesday, January 22, 2013
Last Updated: Tuesday, January 22, 2013
Bookmark and Share
Company launches Microlab® easyBlood STARlet workstation.

Hamilton Robotics this week introduced the easyBlood STARlet™ workstation, a fully automated system for blood fractionation in biobanking applications, at the annual Society of Laboratory Automation and Screening meeting.

The easyBlood STARlet workstation effectively eliminates error-prone manual pipetting steps and increases the safety of precious biobanking samples with state-of-the-art imaging technology, excellent pipetting capabilities, and powerful sample tracking software.

The easyBlood system is a high-throughput, fully integrated workstation that enables technicians to reliably pipet the desired layer of primary blood samples, including the buffy coat. The system is compatible with laboratory information management systems (LIMS), offers full traceability by ensuring that data can be linked confidently to each sample, and enables a seamless biobanking workflow.

The easyBlood STARlet system is manufactured in Hamilton’s Bonaduz, Switzerland facility and is based on the compact Hamilton Robotics Microlab® STARlet platform. The world-leading Hamilton STAR line of instruments offers laboratories the greatest flexibility in liquid handling application design, including heating and cooling devices, multi-channel heads, and HEPA hoods. The easyBlood STARlet workstation offers customers the ability to fractionate blood from a multitude of primary sample tubes to a variety of 2D-barcoded and storage-ready target containers found in today’s biobanks.

The comprehensive easyBlood STARlet system includes all required components and software  for reading and loading barcoded, decapped samples and additional labware such as plates and pipette tips. The instrument's high-resolution, camera-based fraction identification detects difficult targets, such as buffy coats and gel separators in centrifuged samples. The system provides complete control and monitoring of the pipetting process with software-enabled adjustment of pipetting speed to suit specific liquid classes. All three fractions (plasma, buffy coat, and red blood cells) are pipetted and aliquoted as desired.

The easyBlood workstation also integrates with the new, -80°C BiOS™ third-generation automated storage system, which was designed for sample integrity and superior service.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Hamilton Storage Technologies Opens 52,000-Square-Foot Facility in Franklin, Massachusetts
Innovative open floor plan helps life science business address growing market demands.
Tuesday, January 22, 2013
Hamilton Robotics and French Police Scientifique Publish Paper Describing Large-Scale Production of Genetic Profiles
More than 300,000 profiles have already been processed on the Hamilton platforms and stored in French Database.
Wednesday, March 10, 2010
Hamilton Star Liquid Handler Installation at the Diamond Light Source MPL Laboratory
Hamilton Robotics has installed a STAR liquid handler at the commissioned Membrane Protein Crystallography Laboratory at the Diamond Light Source near Didcot in Oxfordshire.
Monday, June 11, 2007
Automation of Adherent Cell Culture Maintenance
Hamilton, Life & Brain and University of Bonn will jointly develop a system for the automated culture of primary cells, cell lines and embryonic stem cells.
Monday, May 14, 2007
Introduction of an Anti Droplet Control Pipette
HAMILTON introduces ADC, for pipetting volatile organic solvents, with pressure sensors in the pipetting channel to monitor each pipetting step.
Monday, December 11, 2006
Scientific News
Breaking Cell Barriers with Retractable Protein Nanoneedles
Adapting a bacterial structure, institute researchers have developed protein actuators that can mechanically puncture cells.
Gene Signature could Lead to a New Way of Diagnosing Lyme Disease
Lyme disease patients had distinctive gene signatures that persisted for at least three weeks, even after they had taken the antibiotics.
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!