Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Immune Cells Engineered in Lab to Resist HIV Infection

Published: Wednesday, January 23, 2013
Last Updated: Wednesday, January 23, 2013
Bookmark and Share
Researchers at the Stanford University School of Medicine have found a novel way to engineer key cells of the immune system so they remain resistant to infection with HIV.

A new study describes the use of a kind of molecular scissors to cut and paste a series of HIV-resistant genes into T cells, specialized immune cells targeted by the AIDS virus. The genome editing was made in a gene that the virus uses to gain entry into the cell. By inactivating a receptor gene and inserting additional anti-HIV genes, the virus was blocked from entering the cells, thus preventing it from destroying the immune system, said Matthew Porteus, MD, an associate professor of pediatrics at Stanford and a pediatric hematologist/oncologist at Lucile Packard Children’s Hospital.

“We inactivated one of the receptors that HIV uses to gain entry and added new genes to protect against HIV, so we have multiple layers of protection — what we call stacking,” said Porteus, the study’s principal investigator. “We can use this strategy to make cells that are resistant to both major types of HIV.”

He said the new approach, a form of tailored gene therapy, could ultimately replace drug treatment, in which patients have to take multiple medications daily to keep the virus in check and prevent the potentially fatal infections wrought by AIDS. The work was done in the laboratory, and clinical trials would still be needed to determine whether the approach would work as a therapy.

“Providing an infected person with resistant T cells would not cure their viral infection,” said Sara Sawyer, PhD, assistant professor of molecular genetics and microbiology at the University of Texas-Austin and a co-author of the study. “However, it would provide them with a protected set of T cells that would ward off the immune collapse that typically gives rise to AIDS.”

The study was published in the Jan. 22 issue of Molecular Therapy.

One of the big challenges in treating AIDS is that the virus is notorious for mutating, so patients must be treated with a cocktail of drugs — known as highly active antiretroviral therapy or HAART — which hit it at various stages of the replication process. The researchers were able to get around that problem with a new, multi-pronged genetic attack that blocks HIV on several fronts. Essentially, they hope to mimic HAART through genetic manipulation.

The technique hinges on the fact that the virus typically enters T cells by latching onto one of two surface proteins known as CCR5 and CXCR4. Some of the latest drugs now used in treatment work by interfering with these receptors’ activity. A small number of people carry a mutation in CCR5 that makes them naturally resistant to HIV. One AIDS patient with leukemia, now famously known as the Berlin patient, was cured of HIV when he received a bone marrow transplant from a donor who had the resistant CCR5 gene.

Scientists at Sangamo BioSciences in Richmond, Calif., have developed a technique using a protein that recognizes and binds to the CCR5 receptor gene, genetically modifying it to mimic the naturally resistant version. The technique uses a zinc finger nuclease, a protein that can break up pieces of DNA, to effectively inactivate the receptor gene. The company is now testing its CCR5-resistant genes in phase-1 and -2 trials with AIDS patients at the University of Pennsylvania.

The Stanford scientists used a similar approach but with an added twist. They used the same nuclease to zero in on an undamaged section of the CCR5 receptor’s DNA. They created a break in the sequence and, in a feat of genetic editing, pasted in three genes known to confer resistance to HIV, Porteus said. This technique of placing several useful genes at a particular site is known as “stacking.”

Incorporating the three resistant genes helped shield the cells from HIV entry via both the CCR5 and CXCR4 receptors. The disabling of the CCR5 gene by the nuclease, as well as the addition of the anti-HIV genes, created multiple layers of protection.

Blocking HIV infection through both the CCR5 and CXCR4 receptors is important, Porteus said, as it hasn’t been achieved before by genome editing. To test the T cells’ protective abilities, the scientists created versions in which they inserted one, two and all three of the genes and then exposed the T cells to HIV.

Though the T cells with the single- and double-gene modifications were somewhat protected against an onslaught of HIV, the triplets were by far the most resistant to infection. These triplet cells had more than 1,200-fold protection against HIV carrying the CCR5 receptor and more than 1,700-fold protection against those with the CXCR4 receptor, the researchers reported. The T cells that hadn’t been altered succumbed to infection with 25 days.

Porteus said he views the work as an important step forward in developing a gene therapy for HIV.
“I’m very excited about what’s happened already,” he said. “This is a significant improvement in that first-generation application.”

He said a potential drawback of the strategy is that while the nuclease is designed to create a break in one spot, it could possibly cause a break elsewhere, leading to cancer or other cell aberration. He said it’s also possible the cells may not tolerate the genetic change.

“It’s possible the cells won’t like the proteins they’re asked to express, so they won’t grow,” he said.
But he said he believes both problems are technically surmountable. He said the researchers’ next step is to test the strategy in T cells taken from AIDS patients, and then move on to animal testing. He said he hopes to begin clinical trials within three to five years.

Though the method is labor-intensive, requiring a tailored approach for each patient, it would save patients from a lifelong dependence on antiretroviral drugs, which have adverse side effects, Porteus noted.

He said he also hopes to adapt these techniques for use against other diseases, such as sickle cell anemia, one of his areas of interest. Porteus works with patients in the Pediatric Bone Marrow Transplant service at Packard Children’s.

In addition to Sawyer, he collaborated with Richard Voit, a former Stanford graduate student who is now an MD/PhD candidate at the University of Texas Southwestern Medical Center, and Moira McMahon, PhD, a former postdoctoral scholar at Stanford who is now at the University of California-San Diego.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Stem Cells Police Themselves to Reduce Scarring
Scientists have discovered stem cells in muscle fibers change gene expressions to respond to injury.
Tuesday, November 29, 2016
New Compound to Reduce Tumor Growth
Researchers at Stanford found that a new cell surface receptor they created is effective at inhibiting cancer growth in mice.
Tuesday, November 29, 2016
Study Identifies Asymptomatic Ebola
Research team determines that 25% of individuals in a Sierra Leone village were infected with the Ebola virus but had no symptoms.
Monday, November 21, 2016
Statins Linked to Better Survival Rates of Cardiovascular Patients
In a study of patients with cardiovascular disease, researchers concluded that high-intensity statin treatments increased rates of survival.
Thursday, November 10, 2016
DNA Sequencing Determines Lymphoma Origin, Prognosis
Monitoring cancer DNA in blood can predict recurrence and prognosis and drive treatment decisions.
Thursday, November 10, 2016
Step Toward Gene Therapy for Sickle Cell Disease
Using CRISPR/Cas9, researchers repaired the gene that causes sickle cell disease, and the mended stem cells were successfully transplanted into mice.
Wednesday, November 09, 2016
Study Identifies New Biomarkers for Huntington’s Disease
Researchers have identifed biomarkers that show the progression of Huntington's disease.
Wednesday, November 09, 2016
Gene Therapy for Blistering Skin Disease Shows Promise
Grafting genetically altered skin onto patients’ chronic wounds marks the first time skin-based gene therapy has been demonstrated to be safe and effective in humans.
Wednesday, November 02, 2016
Maturation Control Hormone of Fat Cells Discovered
Mature fat cells produce a hormone that regulates the differentiation of nearby stem cells in response to glucocorticoid hormones and high-fat diets.
Tuesday, November 01, 2016
Common Prostate Cancer Treatment Linked to Dementia
Study suggests that male prostate cancer patients treated with testosterone-lowering drugs are twice as likely to develop dementia.
Monday, October 17, 2016
Inflammation Test May Predict Cardiovascular Disease
An assessment combining measures of immune-cell responsiveness predicted cardiovascular problems in individuals who likely would have slipped under the radar.
Monday, October 17, 2016
Gene Could Explain Insulin Resistance
Shutting off a gene implicated in insulin resistance leads to damaged mitochondria and decreased exercise capacity in mice.
Wednesday, October 05, 2016
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Wednesday, September 28, 2016
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Tuesday, September 27, 2016
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Tuesday, September 27, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Forensic 3D Documentation of Skin Injuries
In this study, the validity of using photogrammetry for documenting injuries in a pathological context was demonstrated.
3-D Printed Dog’s Nose Improves Vapor Detection
By mimicking how dogs get their whiffs, a team of government and university researchers have demonstrated that “active sniffing” can improve by more than 10 times the performance of current technologies that rely on continuous suction to detect trace amounts of explosives and other contraband.
New Markers for Forensic Body-fluid Identification
University of Bonn researchers have successfully identified specific Micro-RNA signatures to help forensically identify body fluids.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Major Neuroscience Initiative Launched
Tianqiao and Chrissy Chen Institute invest $115 million to further expand neuroscience research, while Caltech construct $200 million biosciences complex.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!