Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Immune Cells Engineered in Lab to Resist HIV Infection

Published: Wednesday, January 23, 2013
Last Updated: Wednesday, January 23, 2013
Bookmark and Share
Researchers at the Stanford University School of Medicine have found a novel way to engineer key cells of the immune system so they remain resistant to infection with HIV.

A new study describes the use of a kind of molecular scissors to cut and paste a series of HIV-resistant genes into T cells, specialized immune cells targeted by the AIDS virus. The genome editing was made in a gene that the virus uses to gain entry into the cell. By inactivating a receptor gene and inserting additional anti-HIV genes, the virus was blocked from entering the cells, thus preventing it from destroying the immune system, said Matthew Porteus, MD, an associate professor of pediatrics at Stanford and a pediatric hematologist/oncologist at Lucile Packard Children’s Hospital.

“We inactivated one of the receptors that HIV uses to gain entry and added new genes to protect against HIV, so we have multiple layers of protection — what we call stacking,” said Porteus, the study’s principal investigator. “We can use this strategy to make cells that are resistant to both major types of HIV.”

He said the new approach, a form of tailored gene therapy, could ultimately replace drug treatment, in which patients have to take multiple medications daily to keep the virus in check and prevent the potentially fatal infections wrought by AIDS. The work was done in the laboratory, and clinical trials would still be needed to determine whether the approach would work as a therapy.

“Providing an infected person with resistant T cells would not cure their viral infection,” said Sara Sawyer, PhD, assistant professor of molecular genetics and microbiology at the University of Texas-Austin and a co-author of the study. “However, it would provide them with a protected set of T cells that would ward off the immune collapse that typically gives rise to AIDS.”

The study was published in the Jan. 22 issue of Molecular Therapy.

One of the big challenges in treating AIDS is that the virus is notorious for mutating, so patients must be treated with a cocktail of drugs — known as highly active antiretroviral therapy or HAART — which hit it at various stages of the replication process. The researchers were able to get around that problem with a new, multi-pronged genetic attack that blocks HIV on several fronts. Essentially, they hope to mimic HAART through genetic manipulation.

The technique hinges on the fact that the virus typically enters T cells by latching onto one of two surface proteins known as CCR5 and CXCR4. Some of the latest drugs now used in treatment work by interfering with these receptors’ activity. A small number of people carry a mutation in CCR5 that makes them naturally resistant to HIV. One AIDS patient with leukemia, now famously known as the Berlin patient, was cured of HIV when he received a bone marrow transplant from a donor who had the resistant CCR5 gene.

Scientists at Sangamo BioSciences in Richmond, Calif., have developed a technique using a protein that recognizes and binds to the CCR5 receptor gene, genetically modifying it to mimic the naturally resistant version. The technique uses a zinc finger nuclease, a protein that can break up pieces of DNA, to effectively inactivate the receptor gene. The company is now testing its CCR5-resistant genes in phase-1 and -2 trials with AIDS patients at the University of Pennsylvania.

The Stanford scientists used a similar approach but with an added twist. They used the same nuclease to zero in on an undamaged section of the CCR5 receptor’s DNA. They created a break in the sequence and, in a feat of genetic editing, pasted in three genes known to confer resistance to HIV, Porteus said. This technique of placing several useful genes at a particular site is known as “stacking.”

Incorporating the three resistant genes helped shield the cells from HIV entry via both the CCR5 and CXCR4 receptors. The disabling of the CCR5 gene by the nuclease, as well as the addition of the anti-HIV genes, created multiple layers of protection.

Blocking HIV infection through both the CCR5 and CXCR4 receptors is important, Porteus said, as it hasn’t been achieved before by genome editing. To test the T cells’ protective abilities, the scientists created versions in which they inserted one, two and all three of the genes and then exposed the T cells to HIV.

Though the T cells with the single- and double-gene modifications were somewhat protected against an onslaught of HIV, the triplets were by far the most resistant to infection. These triplet cells had more than 1,200-fold protection against HIV carrying the CCR5 receptor and more than 1,700-fold protection against those with the CXCR4 receptor, the researchers reported. The T cells that hadn’t been altered succumbed to infection with 25 days.

Porteus said he views the work as an important step forward in developing a gene therapy for HIV.
“I’m very excited about what’s happened already,” he said. “This is a significant improvement in that first-generation application.”

He said a potential drawback of the strategy is that while the nuclease is designed to create a break in one spot, it could possibly cause a break elsewhere, leading to cancer or other cell aberration. He said it’s also possible the cells may not tolerate the genetic change.

“It’s possible the cells won’t like the proteins they’re asked to express, so they won’t grow,” he said.
But he said he believes both problems are technically surmountable. He said the researchers’ next step is to test the strategy in T cells taken from AIDS patients, and then move on to animal testing. He said he hopes to begin clinical trials within three to five years.

Though the method is labor-intensive, requiring a tailored approach for each patient, it would save patients from a lifelong dependence on antiretroviral drugs, which have adverse side effects, Porteus noted.

He said he also hopes to adapt these techniques for use against other diseases, such as sickle cell anemia, one of his areas of interest. Porteus works with patients in the Pediatric Bone Marrow Transplant service at Packard Children’s.

In addition to Sawyer, he collaborated with Richard Voit, a former Stanford graduate student who is now an MD/PhD candidate at the University of Texas Southwestern Medical Center, and Moira McMahon, PhD, a former postdoctoral scholar at Stanford who is now at the University of California-San Diego.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Wednesday, September 28, 2016
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Tuesday, September 27, 2016
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Tuesday, September 27, 2016
Mechanisms of Parkinson’s Pathology
Defects that lead to cells’ failure to decommission faulty mitochondria cause nerve cells to die, triggering the symptoms of Parkinson’s disease.
Tuesday, September 13, 2016
Sleep-Wake Cycle Brain Circuit Identified
Inhibiting nerve cells in a brain area known to guide goal-directed behavior makes mice build nests and fall asleep, a new study shows.
Tuesday, September 06, 2016
Decades-Old Protein Model Revised
Using modern techniques to study how proteins are directed to various areas within a cell, scientists are revising the fundamental understanding of cellular mechanisms.
Thursday, September 01, 2016
An Emerging Model of Cancer
Cancer acts cooperatively, making individual decisions but acting in unison; this insight is being used to create a computer model of cancer.
Thursday, August 25, 2016
Heart Muscle from Stem Cells Aid Cardiovascular Medicine
Researchers discover heart muscle cells from stem cells mirror expression patterns of key genes in donor tissue.
Friday, August 19, 2016
Computers Better Predict Lung Cancer Type, Severity
Study shows automating the analysis of cancer tissue samples increases the accuracy of tumor classification and patient prognoses.
Wednesday, August 17, 2016
Automating Genetic Analysis
Researchers are looking to have computers help perform genetic analysis when scientists study a patient's genome to diagnose a disease.
Wednesday, August 17, 2016
Study Challenges View that Sickle Cell Trait Increases Mortality Risk
Surprising findings from a study of health records of thousands of African-American soldiers show that a common genetic condition poses far less risk than previously thought.
Monday, August 08, 2016
Cheap Blood Test can Distinguish Between Bacterial and Viral Infections
A simple and low cost blood test, currently in development, could accurately identify which patients require antibiotics by distinguishing between viral and bacterial infections.
Friday, July 08, 2016
Neanderthal Y Chromosome Genes Extinct
The Neanderthal counterpart of the human Y chromosome, or male sex chromosome, appears to have died out. Why this happened is up for debate.
Tuesday, April 12, 2016
Scientists Unveil Sex-Linked Control of Genes
Many proteins interact with an RNA molecule called Xist to coat and silence one X chromosome in every female cell.
Wednesday, April 08, 2015
How Common Mutation in Asians Affects Heart Health
Researchers studied heart muscle cells derived from pluripotent stem cells to find out why a genetic mutation common in East Asians leads to an increased risk of heart disease.
Thursday, September 25, 2014
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
New Imaging Technique in Alzheimer’s Disease
Study confirms new imaging technique corresponds a higher degree of actual brain changes.
ReadCoor Launched to Commercialize 3D Sequencing Tech
ReadCoor will leverage the Wyss Institute’s method for simultaneously sequencing and mapping RNAs within cells and tissues to advance development of diagnostics.
NCI Collaborates with Multiple Myeloma Research Foundation
NCI collaborates with MMRF to incorporate genomic and clinical data into NCI Genomic Data Commons database.
Ancient Eggshell Protein Breaks Through DNA Time Barrier
Fossil proteins from a 3.8million year-old eggshell have been identifed, suggests proteins could give insight into evolutionary tree.
Anti-Inflammatory Drugs Could Strengthen Airway Immunity
Mold toxins can weaken the airways' clearing mechanisms and immunity, but PKC inhibitors showed promise as a treatment.
Monkeys Protected by Zika DNA Vaccine
Experimental Zika virus DNA vaccines successfully protected monkeys against Zika infection.
Probe Identifies Schizophrenia Genes That Stunt Brain Development
Scientists have isolated schizophrenia-related gene variants that change gene expression in the brain.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!