Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A New Future for an Old Crop: Barley Enters the Genomics Age

Published: Wednesday, January 23, 2013
Last Updated: Wednesday, January 23, 2013
Bookmark and Share
A Japanese team led by Kazuhiro Sato of Okayama University participates in the International Barley Sequencing Consortium (IBSC) to produce a high resolution assembly of the majority of barley genes.

The barley genome is almost twice the size of that of humans and determining the sequence of its DNA has proved to be a major challenge. This paper published in Nature is a detailed overview of the functional portions of the barley genome, revealing the order and structure of its 26,000 genes. The findings are also described in the January 2013 issue of Okayama University e-Bulletin: http://www.okayama-u.ac.jp/user/kouhou/ebulletin/index.html

First cultivated more than 15,000 years ago, barley is the world's fourth most important cereal crop both in terms of area of cultivation and in quantity of grain produced.

The barley genome is almost twice the size of that of humans and determining the sequence of its DNA has proved to be a major challenge. This is mainly because its genome contains a large proportion of closely related sequences, which are difficult to piece together.

A Japanese team led by Kazuhiro Sato of Okayama University participated in the International Barley Sequencing Consortium (IBSC). They succeeded in producing a high resolution assembly of the majority of barley genes in linear order.

By developing and applying a series of innovative strategies that allowed them to circumvent these difficulties, IBSC describes the location of dynamic regions of the genome that carry genes conferring resistance to diseases. This achievement also highlights the unprecedented detail in the differences (15 million positions) between a range of different barley cultivars. The report provides a detailed overview of the functional portions of the barley genome, revealing the order and structure of its 26,000 genes.

Access to the assembled catalogue of gene sequences will streamline efforts to improve barley production by breeding varieties that are better able to withstand disease and deal with adverse environmental conditions such as drought and heat stress.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Sticky Molecules to Tackle Obesity and Diabetes
Researchers at Okayama University have reported that the overexpression of an adhesion molecule found on the surface of fat cells appears to protect mice from developing obesity and diabetes.
Tuesday, May 10, 2016
Okayama University Research: Combined Gene Transduction and Light Therapy Targets Gastric Cancer
Researchers have reported that photoimmunotherapy is effective against elusive gastric cancer cells following transduction with the gene that expresses the extracellular domain protein of HER2.
Tuesday, March 15, 2016
Metamaterial Absorbers for Infrared Inspection Technologies
A metamaterial absorber capable of highly sensitive infrared detection enhances the spectroscopy of tiny molecular details.
Tuesday, September 29, 2015
Peptide Directs Artificial Tissue Growth
Studies on peptide-modified cultures demonstrate control over both tissue growth and location in vitro.
Thursday, August 06, 2015
World’s First Cancer Stem Cell Model From iPS Cells
Professor Masaharu Seno at the Department of Biotechnology of Okayama University, reports that cancer stem cells produced from mouse iPS cells are actually necessary for the maintenance of the cancer cells themselves.
Wednesday, February 25, 2015
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
Antibodies To Dengue May Alter Course Of Zika Virus Infection
Scientists at Emory Vaccine Center, in collaboration with investigators from Thailand, have found that people infected with dengue virus develop antibodies that cross-react with Zika virus.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!