Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cellmid Records Positive Data in Midkine Antibody Study in Kidney Disease

Published: Thursday, January 24, 2013
Last Updated: Thursday, January 24, 2013
Bookmark and Share
Anti-midkine antibodies reduced mortality rate and preserved kidney function in a mouse model of diabetic nephropathy. Kidney damage markedly reduced in treated animals.

Cellmid Limited has completed its first in-life diabetic nephropathy study with the Company’s anti-midkine antibodies (MK-Ab) in a mouse model of the disease. Two of Cellmid’s proprietary MK-Ab’s were tested. Both antibodies reduced kidney damage significantly, as assessed by functional and histological analysis, with kidney structure largely preserved in the treated animals.

This study provides important new information, as it is the first time the Company has used its own MK-Ab’s in a therapeutic setting in a kidney disease model.

Renal histological assessment showed that glomerular sclerosis was reduced from 48% in untreated animals to below 20% in both MK-Ab treated groups (p<0.01). Interstitial volume was also significantly reduced, from 35% in untreated animals to 12% in both antibody groups (p<0.01). MK-Ab treatment also maintained tubular cell height; untreated animals had mean cell heights below 2μm, compared to 4μm for treated animals (p<0.05).

Kidney function was also preserved, with MK-Ab treated animals showing reduced protein leakage into the urine compared to untreated controls. Protein casts in the kidney, indicating damage, were also significantly reduced in antibody treated animals (Figure 1). Importantly, the MK-Ab treated animals showed healthy weight gain and reduced mortality compared to untreated controls; only 6.3% of treated animals died before the end of the study, compared to 25% of the untreated animals.

Midkine’s role in kidney disease has been extensively studied in the past and is the subject of a dozen peer-reviewed publications. These studies show that MK is a key driver of inflammation and damage in a variety of kidney disease and injury settings.

The current study using Cellmid’s MK-Ab’s was conducted by scientists at the Centre for Transplantation and Renal Research (CTRR), based at the Westmead Millennium Institute and University of Sydney, Westmead Hospital, using an Adriamycin (AN)-induced mouse model of nephropathy. In this model, a single AN injection leads to kidney damage reminiscent of that seen in human diabetic nephropathy.

Diabetic nephropathy is the leading cause of chronic kidney disease globally. It is also one of the most significant long-term complications in terms of morbidity and mortality for patients with diabetes. In the USA alone, diabetes affects 26 million people, and the US Centre for Disease Control (CDC) estimates that as many as one in three adults could have diabetes by 2050 if current trends continue.

Currently, diabetic nephropathy is managed by keeping glucose levels under control, however many of the patients develop end stage renal disease (ESRD). It is estimated that 30-40% of all ESRD is caused by diabetic nephropathy.

ESRD requires the traumatic and costly interventions of kidney dialysis or transplant. A treatment that slowed or halted the progression of diabetic nephropathy into full-blown ESRD would have enormous benefits for the quality of life of diabetes sufferers in addition to reducing the massive costs associated with the treatment of ESRD.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cellmid Announces That British Journal of Pharmacology Features Midkine
BJP features midkine in a special edition with 16 new publications.
Saturday, March 08, 2014
Cellmid Signs Midkine Diagnostic Agreement
Multiple cancer diagnostic products are expected to be developed.
Monday, February 11, 2013
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!