Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Cellmid Records Positive Data in Midkine Antibody Study in Kidney Disease

Published: Thursday, January 24, 2013
Last Updated: Thursday, January 24, 2013
Bookmark and Share
Anti-midkine antibodies reduced mortality rate and preserved kidney function in a mouse model of diabetic nephropathy. Kidney damage markedly reduced in treated animals.

Cellmid Limited has completed its first in-life diabetic nephropathy study with the Company’s anti-midkine antibodies (MK-Ab) in a mouse model of the disease. Two of Cellmid’s proprietary MK-Ab’s were tested. Both antibodies reduced kidney damage significantly, as assessed by functional and histological analysis, with kidney structure largely preserved in the treated animals.

This study provides important new information, as it is the first time the Company has used its own MK-Ab’s in a therapeutic setting in a kidney disease model.

Renal histological assessment showed that glomerular sclerosis was reduced from 48% in untreated animals to below 20% in both MK-Ab treated groups (p<0.01). Interstitial volume was also significantly reduced, from 35% in untreated animals to 12% in both antibody groups (p<0.01). MK-Ab treatment also maintained tubular cell height; untreated animals had mean cell heights below 2μm, compared to 4μm for treated animals (p<0.05).

Kidney function was also preserved, with MK-Ab treated animals showing reduced protein leakage into the urine compared to untreated controls. Protein casts in the kidney, indicating damage, were also significantly reduced in antibody treated animals (Figure 1). Importantly, the MK-Ab treated animals showed healthy weight gain and reduced mortality compared to untreated controls; only 6.3% of treated animals died before the end of the study, compared to 25% of the untreated animals.

Midkine’s role in kidney disease has been extensively studied in the past and is the subject of a dozen peer-reviewed publications. These studies show that MK is a key driver of inflammation and damage in a variety of kidney disease and injury settings.

The current study using Cellmid’s MK-Ab’s was conducted by scientists at the Centre for Transplantation and Renal Research (CTRR), based at the Westmead Millennium Institute and University of Sydney, Westmead Hospital, using an Adriamycin (AN)-induced mouse model of nephropathy. In this model, a single AN injection leads to kidney damage reminiscent of that seen in human diabetic nephropathy.

Diabetic nephropathy is the leading cause of chronic kidney disease globally. It is also one of the most significant long-term complications in terms of morbidity and mortality for patients with diabetes. In the USA alone, diabetes affects 26 million people, and the US Centre for Disease Control (CDC) estimates that as many as one in three adults could have diabetes by 2050 if current trends continue.

Currently, diabetic nephropathy is managed by keeping glucose levels under control, however many of the patients develop end stage renal disease (ESRD). It is estimated that 30-40% of all ESRD is caused by diabetic nephropathy.

ESRD requires the traumatic and costly interventions of kidney dialysis or transplant. A treatment that slowed or halted the progression of diabetic nephropathy into full-blown ESRD would have enormous benefits for the quality of life of diabetes sufferers in addition to reducing the massive costs associated with the treatment of ESRD.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cellmid Announces That British Journal of Pharmacology Features Midkine
BJP features midkine in a special edition with 16 new publications.
Saturday, March 08, 2014
Cellmid Signs Midkine Diagnostic Agreement
Multiple cancer diagnostic products are expected to be developed.
Monday, February 11, 2013
Scientific News
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Michigan Researchers Use Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos