Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Solve Crystal Structure of Key Biofilm Protein

Published: Monday, January 28, 2013
Last Updated: Monday, January 28, 2013
Bookmark and Share
Scientists have solved the crystal structure of a protein involved in holding bacterial cells together in a biofilm, a major development in their exploration of the causes of hospital-acquired infections.

The finding, the researchers say, enables them to have an atomic-level view of what the protein looks like and how it becomes "sticky” in the presence of zinc ions, forming an extensive adhesive contact crucial to the formation of infection-causing biofilms.

The researchers report their findings in the online Early Edition of PNAS, the official journal of the National Academy of Sciences. Andrew Herr, PhD, an associate professor in the department of molecular genetics, biochemistry and microbiology at UC and Ohio Eminent Scholar in structural biology, led the research and wrote the paper.

The research team, in addition to Herr, consisted of Deborah Conrady, PhD, now a postdoctoral fellow at the University of British Columbia, and Jeffrey Wilson, PhD, a former postdoctoral fellow at UC.

"Understanding the mechanisms of biofilm formation will allow us to combat the significant pathogenic advantages of biofilm-based infectious diseases,” says Herr.

Hospital-acquired infections affect about 1.7 million people per year in the United States and result in an estimated 99,000 deaths annually, according to the Centers for Disease Control and Prevention. About two-thirds of all hospital-acquired infections can be traced to two staphylococcal species, Staphylococcus aureus—including methicillin-resistant strains  (MRSA) that are particularly difficult to treat—and Staphylococcus epidermidis.

Staphylococci can grow as biofilms, which are specialized communities of bacteria that are highly resistant to antibiotics and immune responses. They are remarkably adhesive and can grow on many surfaces, including implanted medical devices such as pacemakers, heart valve replacements and artificial joints. Preventing or inhibiting the growth of such biofilms would dramatically reduce the incidence of staph infections.

Previously, researchers in Herr’s lab had detailed findings that the presence of zinc is crucial to the formation of infection-causing biofilms. Zinc, they found, causes a protein on the bacterial surface to act like molecular Velcro, allowing the bacterial cells in the biofilm to stick to one another. Zinc chelation, a way to make the zinc unavailable to the bacteria, prevented biofilm formation by Staphylococcus epidermidis and Staphylococcus aureus.

In the new research, the investigators determined the atomic structure of a portion of an adhesive protein Aap bound to zinc by growing crystals of the protein, freezing them in liquid nitrogen and bombarding them with highly intense X-rays. They then measured how the X-rays were scattered by the crystal, and used those measurements to determine the 3D position of the atoms in the protein.

The protein, the researchers found, adopts an elongated flexible fold with zinc ions bridging two protein chains. The mode of assembly indicates that Aap is likely to form twisted rope-like structures between bacterial cells.

"We can see literally what the structure of the protein is,” Herr says. "In other words, how it is put together, how it folds back on itself to form its unique shape and how two copies of the protein latch onto the zinc ion and stick together like molecular Velcro.”

Knowing the structure allows researchers to understand which parts of the protein to target therapeutically, Herr says, which could provide new approaches for disrupting the formation of biofilms. The most practical applications might involve coatings for implanted medical devices, or rinses that a surgeon could use to clear the area around an implant.

The research project was supported by the National Institutes of Health and by a pilot grant from UC’s Midwest Center for Emerging Infectious Diseases; Herr also had access to funds from the State of Ohio Eminent Scholars Program. The authors report no conflicts of interest.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

'Wimpy' Antibody Protects Against Kidney Disease in Mice
Study finds that the mouse antibody IgG1 may actually be protective.
Tuesday, November 04, 2014
Hello? Sweat and a Smartphone Could Become The Hot New Health Screening
A new article highlighting UC research reveals how sweat and microfluidics can pinpoint and help dodge potential health issues for everyone from athletes to preemies.
Tuesday, October 28, 2014
UC Develops Unique Nano Carrier to Target Drug Delivery to Cancer Cells
Researchers have developed a unique nanostructure that can, because of its dual-surface structure, serve as an improved “all-in-one tool” against cancer.
Thursday, October 31, 2013
Biomarkers Discovered for Inflammatory Bowel Disease
Researchers have identified a number of biomarkers for inflammatory bowel disease (IBD), which could help with earlier diagnosis and intervention.
Thursday, May 23, 2013
Patient Openness to Research Can Depend on Race and Sex of Study Personnel
Researchers have found that the race and sex of study personnel can influence a patient’s decision on whether or not to participate in clinical research.
Monday, May 20, 2013
University of Cincinnati Announces Microfluidic Breakthroughs
Using something called “inertial microfluidics,” scientists are able to continuously and selectively collect rare cells, such as circulating tumor cells, based on their size vs. other biomarkers.
Wednesday, October 31, 2012
Researchers Discover Gene That Causes Deafness
University of Cincinnati scientists have found a new genetic mutation responsible for deafness and hearing loss associated with Usher syndrome type 1.
Wednesday, October 03, 2012
Scientific News
NIH Study Finds Calorie Restriction Lowers Some Risk Factors for Age-Related Diseases
Two-year trial did not produce expected metabolic changes, but influenced other life span markers.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!