Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Safer Way to Vaccinate

Published: Monday, January 28, 2013
Last Updated: Monday, January 28, 2013
Bookmark and Share
Polymer film that gradually releases DNA coding for viral proteins could offer a better alternative to traditional vaccines.

Vaccines usually consist of inactivated viruses that prompt the immune system to remember the invader and launch a strong defense if it later encounters the real thing. However, this approach can be too risky with certain viruses, including HIV.

In recent years, many scientists have been exploring DNA as a potential alternative vaccine. About 20 years ago, DNA coding for viral proteins was found to induce strong immune responses in rodents, but so far, tests in humans have failed to duplicate that success.

In a paper appearing in the Jan. 27 online issue of Nature Materials, MIT researchers describe a new type of vaccine-delivery film that holds promise for improving the effectiveness of DNA vaccines. If such vaccines could be successfully delivered to humans, they could overcome not only the safety risks of using viruses to vaccinate against diseases such as HIV, but they would also be more stable, making it possible to ship and store them at room temperature.

This type of vaccine delivery would also eliminate the need to inject vaccines by syringe, says Darrell Irvine, an MIT professor of biological engineering and materials science and engineering. “You just apply the patch for a few minutes, take it off and it leaves behind these thin polymer films embedded in the skin,” he says.

Irvine and Paula Hammond, the David H. Koch Professor in Engineering, are the senior authors of the Nature Materials paper. Both are members of MIT’s David H. Koch Institute for Integrative Cancer Research. The lead author of the paper is Peter DeMuth, a graduate student in biological engineering.

Gradual vaccine delivery

Scientists have had some recent success delivering DNA vaccines to human patients using a technique called electroporation. This method requires first injecting the DNA under the skin, then using electrodes to create an electric field that opens small pores in the membranes of cells in the skin, allowing DNA to get inside. However, the process can be painful and give varying results, Irvine says.

“It's showing some promise but it's certainly not ideal and it's not something you could imagine in a global prophylactic vaccine setting, especially in resource-poor countries,” he says.

Irvine and Hammond took a different approach to delivering DNA to the skin, creating a patch made of many layers of polymers embedded with the DNA vaccine. These polymer films are implanted under the skin using microneedles that penetrate about half a millimeter into the skin — deep enough to deliver the DNA to immune cells in the epidermis, but not deep enough to cause pain in the nerve endings of the dermis.

Once under the skin, the films degrade as they come in contact with water, releasing the vaccine over days or weeks. As the film breaks apart, the DNA strands become tangled up with pieces of the polymer, which protect the DNA and help it get inside cells.

The researchers can control how much DNA gets delivered by tuning the number of polymer layers. They can also control the rate of delivery by altering how hydrophobic (water-fearing) the film is. DNA injected on its own is usually broken down very quickly, before the immune system can generate a memory response. When the DNA is released over time, the immune system has more time to interact with it, boosting the vaccine’s effectiveness.

The polymer film also includes an adjuvant — a molecule that helps to boost the immune response. In this case, the adjuvant consists of strands of RNA that resemble viral RNA, which provokes inflammation and recruits immune cells to the area.

Eliciting immune responses

In tests with mice, the researchers found that the immune response induced by the DNA-delivering film was as good as or better than that achieved with electroporation.

To test whether the vaccine might provoke a response in primates, the researchers applied a polymer film carrying DNA that codes for proteins from the simian form of HIV to macaque skin samples cultured in the lab. In skin treated with the film, DNA was easily detectable, while DNA injected alone was quickly broken down.

“The hope is that that's an indication that this will translate to large animals and hopefully humans,” Irvine says.

The researchers now plan to perform further tests in non-human primates before undertaking possible tests in humans. If successful, the vaccine-delivering patch could potentially be used to deliver vaccines for many different diseases, because the DNA sequence can be easily swapped out depending on the disease being targeted.

“If you're making a protein vaccine, every protein has its little quirks, and there are manufacturing issues that have to be solved to scale it up to humans. If you had a DNA platform, the DNA is going to behave the same no matter what antigen it’s encoding,” Irvine says.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Friday, July 31, 2015
Firms “Under-invest” in Long-Term Cancer Research
Tweaks to the R&D pipeline could create new drugs and greater social benefit.
Thursday, July 30, 2015
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Researchers Develop Genetic Tools to Engineer Common Gut Bacterium
Researchers from the Massachusetts Institute of Technology have developed genetic parts that can be combined to program the commensal gut bacterium Bacteroides thetaiotaomicron.
Friday, July 10, 2015
Chemists Design a Quantum-Dot Spectrometer
New instrument is small enough to function within a smartphone, enabling portable light analysis.
Friday, July 03, 2015
Longstanding Problem Put to Rest
Proof that a 40-year-old algorithm for comparing genomes is the best possible will come as a relief to computer scientists.
Thursday, June 11, 2015
Tough biogel structures produced by 3-D printing
Researchers have developed a new way of making tough — but soft and wet — bio-compatible materials, called “hydrogels,” into complex and intricately patterned shapes.
Wednesday, June 03, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Master Gene Regulator Could Be New Target For Schizophrenia Treatment
Researchers at MIT’s Picower Institute for Learning and Memory have identified a master genetic regulator that could account for faulty brain functions that contribute to schizophrenia.
Wednesday, May 27, 2015
Freshly Squeezed Vaccines
Microfluidic cell-squeezing device opens new possibilities for cell-based vaccines.
Saturday, May 23, 2015
Designing Better Medical Implants
A team of MIT researchers have discovered a novel method for reducing the typical immune system rejection response when implanting biomedical devices into the body.
Wednesday, May 20, 2015
Researchers Identify New Target For Anti-Malaria Drugs
Manipulating the permeability of a type of vacuole could help defeat malarial parasites.
Thursday, May 14, 2015
Faster, Smaller, More Informative
Device can measure the distribution of tiny particles as they flow through a microfluidic channel.
Thursday, May 14, 2015
How To Identify Drugs That Work Best For Each Patient
Implantable device could allow doctors to test cancer drugs in patients before prescribing chemotherapy.
Monday, April 27, 2015
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Lab-on-a-Chip Offers Promise for TB and Asthma Patients
A device to mix liquids using ultrasonics is the first and most difficult component in a miniaturized system for low-cost analysis of sputum from patients with pulmonary diseases such as tuberculosis and asthma.
Intracellular Microlasers Could Allow Precise Labeling of up to a Trillion Individual Cells
MGH investigators have induced structures incorporated within individual cells to produce laser light at wavelengths that differ based on the size, shape and composition of each microlaser, allowing precise labeling of individual cells.
Real-Time Imaging of Lung Lesions During Surgery
Targeted molecular agents cause lung adenocarcinomas to fluoresce during surgery, according to pilot report.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
New Vaccine For Chlamydia to Use Synthetic Biology
Prokarium Ltd, a biotechnology company developing transformational oral vaccines, have announced new funding from SynbiCITE, the UK’s Innovation and Knowledge Centre for Synthetic Biology.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!