Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Safer Way to Vaccinate

Published: Monday, January 28, 2013
Last Updated: Monday, January 28, 2013
Bookmark and Share
Polymer film that gradually releases DNA coding for viral proteins could offer a better alternative to traditional vaccines.

Vaccines usually consist of inactivated viruses that prompt the immune system to remember the invader and launch a strong defense if it later encounters the real thing. However, this approach can be too risky with certain viruses, including HIV.

In recent years, many scientists have been exploring DNA as a potential alternative vaccine. About 20 years ago, DNA coding for viral proteins was found to induce strong immune responses in rodents, but so far, tests in humans have failed to duplicate that success.

In a paper appearing in the Jan. 27 online issue of Nature Materials, MIT researchers describe a new type of vaccine-delivery film that holds promise for improving the effectiveness of DNA vaccines. If such vaccines could be successfully delivered to humans, they could overcome not only the safety risks of using viruses to vaccinate against diseases such as HIV, but they would also be more stable, making it possible to ship and store them at room temperature.

This type of vaccine delivery would also eliminate the need to inject vaccines by syringe, says Darrell Irvine, an MIT professor of biological engineering and materials science and engineering. “You just apply the patch for a few minutes, take it off and it leaves behind these thin polymer films embedded in the skin,” he says.

Irvine and Paula Hammond, the David H. Koch Professor in Engineering, are the senior authors of the Nature Materials paper. Both are members of MIT’s David H. Koch Institute for Integrative Cancer Research. The lead author of the paper is Peter DeMuth, a graduate student in biological engineering.

Gradual vaccine delivery

Scientists have had some recent success delivering DNA vaccines to human patients using a technique called electroporation. This method requires first injecting the DNA under the skin, then using electrodes to create an electric field that opens small pores in the membranes of cells in the skin, allowing DNA to get inside. However, the process can be painful and give varying results, Irvine says.

“It's showing some promise but it's certainly not ideal and it's not something you could imagine in a global prophylactic vaccine setting, especially in resource-poor countries,” he says.

Irvine and Hammond took a different approach to delivering DNA to the skin, creating a patch made of many layers of polymers embedded with the DNA vaccine. These polymer films are implanted under the skin using microneedles that penetrate about half a millimeter into the skin — deep enough to deliver the DNA to immune cells in the epidermis, but not deep enough to cause pain in the nerve endings of the dermis.

Once under the skin, the films degrade as they come in contact with water, releasing the vaccine over days or weeks. As the film breaks apart, the DNA strands become tangled up with pieces of the polymer, which protect the DNA and help it get inside cells.

The researchers can control how much DNA gets delivered by tuning the number of polymer layers. They can also control the rate of delivery by altering how hydrophobic (water-fearing) the film is. DNA injected on its own is usually broken down very quickly, before the immune system can generate a memory response. When the DNA is released over time, the immune system has more time to interact with it, boosting the vaccine’s effectiveness.

The polymer film also includes an adjuvant — a molecule that helps to boost the immune response. In this case, the adjuvant consists of strands of RNA that resemble viral RNA, which provokes inflammation and recruits immune cells to the area.

Eliciting immune responses

In tests with mice, the researchers found that the immune response induced by the DNA-delivering film was as good as or better than that achieved with electroporation.

To test whether the vaccine might provoke a response in primates, the researchers applied a polymer film carrying DNA that codes for proteins from the simian form of HIV to macaque skin samples cultured in the lab. In skin treated with the film, DNA was easily detectable, while DNA injected alone was quickly broken down.

“The hope is that that's an indication that this will translate to large animals and hopefully humans,” Irvine says.

The researchers now plan to perform further tests in non-human primates before undertaking possible tests in humans. If successful, the vaccine-delivering patch could potentially be used to deliver vaccines for many different diseases, because the DNA sequence can be easily swapped out depending on the disease being targeted.

“If you're making a protein vaccine, every protein has its little quirks, and there are manufacturing issues that have to be solved to scale it up to humans. If you had a DNA platform, the DNA is going to behave the same no matter what antigen it’s encoding,” Irvine says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Nanosensors Could Determine Tumours’ Ability to Remodel Tissue
Researchers design nanosensors that can profile tumours, focusing on protease levels.
Thursday, September 29, 2016
High-Capacity Nanoparticles
New type of nanoparticle can now have three or more drugs packaged within it, allowing for customised cancer therapy.
Thursday, September 15, 2016
Delivering Beneficial Bacteria
Method that transports microbes through the stomach to the intestine may benefit human health.
Thursday, September 15, 2016
Linking RNA Structure and Function
Biologists have deciphered a lncRNA structure and used the information to investigate its cellular protein interactions.
Friday, September 09, 2016
Hacking Microbes
Startup’s engineered yeast helps clients produce fragrances and flavors more efficiently.
Thursday, September 08, 2016
Guided Needles Hit the Mark
New sensor could help anesthesiologists place needles for epidurals and other medical procedures.
Thursday, September 08, 2016
Changing Ocean Chemistry Due To Human Activity
More anthropogenic carbon in the northeast Pacific means weaker shells for many marine species.
Wednesday, September 07, 2016
Targeting Neglected Diseases
New enzyme-mapping advancement could help drug development for combating diseases in the developing world.
Wednesday, August 17, 2016
Protecting Privacy in Genomic Databases
System helps ensure databases used in medical research will not leak patients’ personal information.
Wednesday, August 10, 2016
Biopharmaceuticals on Demand
Portable production system would use microbes for manufacturing small amounts of vaccines and therapeutics.
Monday, August 01, 2016
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Wednesday, July 27, 2016
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Wednesday, July 06, 2016
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Friday, July 01, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Fat Cells That Amplify Nerve Signals in Response to Cold Also Affect Blood Sugar Metabolism
Researchers at UTSW have found that the protein connexin 43 forms cell-to-cell communication channels on the surface of emerging beige fat cells that amplify the signals from those few nerve fibers.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!