Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

DNA-Repairing Protein may be Key to Preventing Recurrence of some Cancers

Published: Tuesday, January 29, 2013
Last Updated: Tuesday, January 29, 2013
Bookmark and Share
Scientists tested one specific cancer-fighting drug used in the treatment of breast cancer to determine the role of the protein.

Just as the body can become resistant to antibiotics, certain methods of killing cancer tumors can end up creating resistant tumor cells. But a University of Central Florida professor has found a protein present in several types of cancer, including breast and ovarian cancer, which could be helpful in preventing tumors from coming back.

The protein, KLF8, appears to protect tumor cells from drugs aimed at killing them and even aid the tumor cells’ ability to regenerate.

“All cells have a DNA-repair mechanism,” explained Jihe Zhao, a medical doctor and researcher who in the past few months has published several articles related to the protein in the Journal of Biological Chemistry and Oncogene, among others. “That’s why we survive constant DNA damage threats. But KLF8 is overexpressed in specific cancers, such as breast cancer and ovarian cancer. The thought is that if we can stop it from switching on, we may be able to stop the tumors from coming back as part of therapy. We still need to do a lot more research, but it is plausible.

There are between 2.5 million and 2.7 million women who have breast cancer in the United States and 10 to 20 percent will experience a recurrence, according to the American Cancer Society. Current treatment options, depending on the stage of cancer, include surgical removal followed by chemotherapy using a combination of cancer killing drugs. Each year about 22,200 women are also diagnosed with ovarian cancer.

DNA damage-based chemotherapies depend on failure of cancer cells to repair the DNA damage and subsequent cell death, according to the journal article. Aberrant high levels of DNA repair function in the cells likely increase not only the resistance of the cells to such therapies but also the malignancy of the cells due to improper DNA repair-mediated genomic and chromosomal instability.

In the study, Zhao’s team tested one specific cancer-fighting drug used in the treatment of breast cancer to determine the role of the protein.

“Indeed, our results have clearly linked the KLF8-promoted DNA repair to the cell resistance to doxorubicin-induced cell death,” Zhao said. “It remains to be determined whether KLF8 plays a similar role in repairing DNA damage caused by other types of genotoxic agents such as DNA alkylating agents and ionizing radiation.”

Even so, the results suggest that in addition to enhancing the drug resistance of the cancer cells, KLF8 could play a role in disturbing genomic integrity through its aberrant DNA repair function and subsequently contribute to aggressive progression of cancer.

Zhao, an associate professor, moved his team to UCF’s Burnett School of Biomedical Sciences at the College of Medicine in 2010. In 2002 he started his own la at Albany Medical College and before that he spent six years in post-doctoral training in Cornell University,  Ithaca, N.Y.  He earned his M.D. from Chinese Medical University, Shenyang, China, and Ph.D. in cancer cell biology from Tohoku University Faculty of Medicine, Sendai, Japan. He sits on the editorial boards of several peer-reviewed journals related to cancer research and reviews research articles for many prestigious journals including Cancer Research, Oncogene, Molecular Cell, Nanomedicine, and Journal of Biological Chemistry, to name a few. His research programs are funded by National Cancer Institute of National Institute of Health, American Cancer Society, Susan Komen for the Cure Breast Cancer Foundation, and others.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!