" "
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cracking the hummus: Chickpea genome sequenced

Published: Tuesday, January 29, 2013
Last Updated: Tuesday, January 29, 2013
Bookmark and Share
An international team of scientists has sequenced the genome of the chickpea, a critically important crop in many parts of the world, especially for small-farm operators in marginal environments of Asia and sub-Saharan Africa

An international team of scientists has sequenced the genome of the chickpea, a critically important crop in many parts of the world, especially for small-farm operators in marginal environments of Asia and sub-Saharan Africa, according to an announcement from researchers at the University of California, Davis, and the International Crops Research Institute for the Semi-Arid Tropics in India.

The researchers published this week in the online version of the journal Nature Biotechnology the reference genome of the chickpea variety known as CDC Frontier and the genome sequence of 90 cultivated and wild chickpea lines from 10 different countries.

“The importance of this new resource for chickpea improvement cannot be overstated,” said Douglas Cook, a UC Davis professor of plant pathology.

“The sequencing of the chickpea provides genetic information that will help plant breeders develop highly productive chickpea varieties that can better tolerate drought and resist disease — traits that are particularly important in light of the threat of global climate change,” he said.

Cook is one of three lead authors on the chickpea genome sequencing project, along with Rajeev Varshney of the International Crops Research Institute for the Semi-Arid Tropics and Professor Jun Wang, director of the Beijing Genomics Institute of China.

The chickpea plant, whose high-protein seed is also referred to as a garbanzo bean, is thought to have originated in the Middle East nearly 7,400 years ago.

India grows, consumes and imports more chickpeas than any other nation in the world, producing more than 8 million tons annually, according to the Food and Agriculture Organization’s 2011 statistics. In contrast, the United States produced 95,770 tons of chickpeas annually, as of 2011.

Today’s announcement of the chickpea genome sequencing is the culmination of years of genome analysis by the International Chickpea Genome Sequencing Consortium, led by the International Crops Research Institute for Semi-Arid Tropics. The consortium includes 49 scientists from 23 organizations in 10 countries.

Funding for the sequencing project was provided by the U.S. National Science Foundation; Saskatchewan Pulse Growers of Canada; Grains Resource Development Corporation of Australia; Indo-German Technology Corporation of Germany and India; National Institute for Agricultural and Food Research and Technology of Spain; U.S. Department of Agriculture; Ministry of Education, Youth and Sports of the Czech Republic; University of Cordoba, Spain; Indian Council of Agricultural Research; BGI of China; and International Crops Research Institute for the Semi-Arid Tropics.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Battery Component Found to Harm Key Soil Microorganism
The material at the heart of the lithium ion batteries that power electric vehicles, laptop computers and smartphones has been shown to impair a key soil bacterium, according to new research.
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!