Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

UC Davis Helps Global Team Sequence Chickpea Genome

Published: Wednesday, January 30, 2013
Last Updated: Wednesday, January 30, 2013
Bookmark and Share
An international team of scientists has sequenced the genome of the chickpea, a critically important crop in many parts of the world, especially for small-farm operators in marginal environments of Asia and sub-Saharan Africa.

The researchers published this week in the online version of the journal Nature Biotechnology the reference genome of the chickpea variety known as CDC Frontier and the genome sequence of 90 cultivated and wild chickpea lines from 10 different countries.

“The importance of this new resource for chickpea improvement cannot be overstated,” said Douglas Cook, a UC Davis professor of plant pathology.

“The sequencing of the chickpea provides genetic information that will help plant breeders develop highly productive chickpea varieties that can better tolerate drought and resist disease — traits that are particularly important in light of the threat of global climate change,” he said.

Cook is one of three lead authors on the chickpea genome sequencing project, along with Rajeev Varshney of the International Crops Research Institute for the Semi-Arid Tropics and Professor Jun Wang, director of the Beijing Genomics Institute of China.

The chickpea plant, whose high-protein seed is also referred to as a garbanzo bean, is thought to have originated in the Middle East nearly 7,400 years ago.

India grows, consumes and imports more chickpeas than any other nation in the world, producing more than 8 million tons annually, according to the Food and Agriculture Organization’s 2011 statistics. In contrast, the United States produced 95,770 tons of chickpeas annually, as of 2011.

Today’s announcement of the chickpea genome sequencing is the culmination of years of genome analysis by the International Chickpea Genome Sequencing Consortium, led by the International Crops Research Institute for Semi-Arid Tropics. The consortium includes 49 scientists from 23 organizations in 10 countries.

Funding for the sequencing project was provided by the U.S. National Science Foundation; Saskatchewan Pulse Growers of Canada; Grains Resource Development Corporation of Australia; Indo-German Technology Corporation of Germany and India; National Institute for Agricultural and Food Research and Technology of Spain; U.S. Department of Agriculture; Ministry of Education, Youth and Sports of the Czech Republic; University of Cordoba, Spain; Indian Council of Agricultural Research; BGI of China; and International Crops Research Institute for the Semi-Arid Tropics.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Local Microbes Can Predict Wine’s Chemical Profile
Regionally distinctive groups of bacteria and fungi, associated with local climate and environmental conditions, may leave a very specific “fingerprint” on a wine’s chemical composition, report University of California, Davis, researchers who collaborated on a new study with two Napa Valley wineries.
Wednesday, June 15, 2016
Autism, Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Wednesday, May 04, 2016
Fueling Infant Gut Microbes
UC Davis researchers have shown that an enzyme produced by beneficial microbes in babies’ intestines is able to harvest specific sugar compounds from human breast-milk and cow’s milk.
Monday, April 18, 2016
Reprogramming Scorpion Venom
‘Twist of nature’ neutralizes toxin.
Monday, April 18, 2016
Gene Blocking Lettuce Germination Also Regulates Flowering Time
Study finds that DOG1 gene functions by acting on certain microRNAs, and may help adapt the timing of seed dormancy and flowering to environmental conditions.
Wednesday, March 30, 2016
Team Finds Early Inflammatory Response Paralyzes T Cells
Findings could have enormous implications for immunotherapy, autoimmune disorders, transplants and other aspects of immunity.
Thursday, August 20, 2015
UC Davis to Establish Food Safety Center in China
Officials from the city of Zhuhai, China, and the University of California, Davis, have signed a memorandum of understanding to establish the World Food Center-China.
Monday, June 01, 2015
Nanomaterials In Sunscreens And Boats Leave Marine Life Vulnerable
Study shows that sea urchin embryos are more vulnerable to toxins when exposed to nanomaterials.
Thursday, May 14, 2015
Milk Protein Comparison Unveils Nutritional Gems For Developing Babies
The study revealed the first comprehensive macaque milk proteome and newly identified 524 human milk proteins.
Tuesday, March 17, 2015
Keck Foundation Grant Awarded to UC Davis Researcher
Grant will help fund biomedical project, "In Vivo 3D Imaging Using Bioluminescent Gene Reporters and MRI."
Monday, March 10, 2014
High Good and Low Bad Cholesterol Levels are Healthy for the Brain
Study suggests a potential new approach to lowering the prevalence of Alzheimer's disease.
Friday, January 03, 2014
UC Davis "Lab on a Chip" Measures Heart Disease Risk
New test mimics artery conditions, detects inflammatory cells linked with atherosclerosis and myocardial infarction.
Thursday, August 08, 2013
Cancer Drug Unties Knots in the Chromosome that Causes Angelman and Prader-Willi Syndromes
Researchers have identified how and where in the genome a cancer chemotherapy agent acts on and ‘un-silences’ the epigenetically silenced gene that causes Angelman syndrome.
Thursday, August 08, 2013
UC Davis Receives $9.3 Million Grant for Metabolomics Center
The new center will bring together existing UC Davis service facilities in mass spectrometry, nuclear magnetic resonance and imaging.
Monday, September 10, 2012
Sequencing of 100,000 Pathogens to Help Solve Foodborne Outbreaks
New collaboration of Federal agencies with UC Davis and Agilent Technologies.
Friday, August 24, 2012
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Manufactured Stem Cells to Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Gender Determination in Forensic Investigations
This study investigated the effectiveness of lip print analysis as a tool in gender determination.
Identifying Novel Types of Forensic Markers in Degraded DNA
Scientists have tried to verify the nucleosome protection hypothesis by discovering STRs within nucleosome core regions, using whole genome sequencing.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!