Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Slow-Release "Jelly" Novel Drug Deliverer

Published: Wednesday, January 30, 2013
Last Updated: Wednesday, January 30, 2013
Bookmark and Share
Biomedical engineers have developed a novel method to overcome the major hurdles facing a promising new class of peptide drugs to treat diseases such as diabetes and cancer.

For example, the hormone insulin is a peptide, which regulates the metabolism of carbohydrates in the body and is used as a drug to treat diabetes. There are more than 40 peptide drugs approved for use in humans and more than 650 are being tested in clinical studies.

However, despite their effectiveness, these peptide drugs cannot achieve their full potential for a number of reasons. First, they are rapidly degraded in the blood stream. A second major drawback is their rapid clearance from the body, which requires multiple, frequent injections. Because of this, their concentrations in the blood can rise precipitously right after injection and fall dramatically soon thereafter, causing unwanted side effects for patients.

One popular method to solve this problem involves loading peptide drugs into polymer microspheres that are injected under the skin and slowly degrade and release the peptide drug.   Microsphere-release technology has proven useful, but has many issues related to its manufacture and ease of patient use, the researchers said.

“We wanted to know if we could create a system that does what the polymer microspheres do, but gets rid of the microspheres and is more patient friendly,” said Ashutosh Chilkoti, Theo Pilkington Professor of Biomedical Engineering at Duke’s Pratt School of Engineering.

The new approach involves making a “fusion protein” that consists of multiple copies of a peptide drug fused to a polymer that makes the fusion protein sensitive to body heat. The fusion molecule is a liquid in a syringe but transforms into a “jelly” when injected under the skin.  Enzymes in the skin attack the depot and liberate copies of the peptide, which provides a constant and controllable release of drug over time.

Miriam Amiram, former Chilkoti graduate student and first author on the paper, dubbed the new delivery system POD, for protease-operated depot.

In the latest experiments, published on-line in the journal Proceedings of the National Academy of Science, the researchers fused glucagon-like peptide-1 (GLP-1), a hormone that regulates the release of insulin, with a genetically engineered heat sensitive polymer to create the POD.

“Remarkably, a single injection of the GLP-1 POD was able to reduce blood glucose levels in mice for up to five days, which is 120 times longer than an injection of the peptide alone,” Chilkoti said.  “For a patient with type 2 diabetes, it would be much more desirable to inject such a drug once a week or once a month rather than once or twice a day.

“Additionally, this approach avoids the peaks and valleys of drug concentrations that these patients often experience,” Chilkoti said.

Unlike peptide-loaded microspheres, PODs are also easy to manufacture, as the peptide drug and the heat-sensitive polymer are all made of amino acids, so that they are expressed as one long stretch of amino acids in bacteria.

“Our experiments demonstrate that this new delivery system provides the first entirely genetically encoded alternative to existing peptide drug encapsulation approaches for sustained delivery of peptide drugs,” Chilkoti said.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Molecular Tinkering Doubles Cancer Drug’s Efficacy
Researchers have packaged a widely used cancer drug into nanoparticles, more than doubling its effectiveness at destroying tumors.
Thursday, August 06, 2015
Researchers Learn To Measure Aging Process In Young Adults
Biological measures may be combined to determine whether people are aging faster or slower than their peers.
Tuesday, July 07, 2015
Outsmarting HIV With Vaccine Antigens Made to Order
AIDS vaccine researchers may be one step closer to outwitting HIV, thanks to designer antibodies and antigens made to order at Duke University.
Thursday, July 02, 2015
Animals’ Genomic Buffers May Help Humans
Researchers at Duke University School of Medicine and Brigham and Women’s Hospital, Harvard Medical School have identified a mechanism that explains why some mutations can be disease-causing in one genome but benign in another.
Wednesday, July 01, 2015
New Gene Influences Apple or Pear Shape, Risk of Future Disease
Duke researchers have discovered that a gene called Plexin D1 controls both where fat is stored and how fat cells are shaped.
Tuesday, March 24, 2015
Boy or Girl? Lemur Scents Have the Answer
A new study finds that a pregnant lemur’s signature scent depends in part on whether she’s carrying a girl or a boy.
Friday, February 27, 2015
Duke Awarded $10.4 Million Contract To Continue Developing Radiation Test
The blood test will be able to tell in hours how much radiation a person has absorbed from a nuclear incident.
Friday, February 20, 2015
Bacterial Defense Mechanism Targets Duchenne Muscular Dystrophy
Gene therapy approach could treat 60 percent of Duchenne Muscular Dystrophy patients.
Friday, February 20, 2015
First Contracting Human Muscle Grown in Laboratory
Researchers at Duke University report the first lab-grown, contracting human muscle, which could revolutionize drug discovery and personalized medicine.
Wednesday, January 14, 2015
Drugs to Block Angiogenesis Could Provide New Treatment for TB
Blood supply gives invaders oxygen and a way out.
Monday, November 24, 2014
Gene Required for Recovery from Bacterial Infection Identified
Duke researchers have uncovered the genes that are normally activated during recovery from bacterial infection in the C. elegans worm. The finding could be key to new antibiotics and countering auto-immune disorders.
Monday, October 27, 2014
Nanoparticles Accumulate Quickly in Wetland Sediment
Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles.
Friday, October 10, 2014
Cancer-Fighting Drugs Might Also Stop Malaria Early
A number of compounds have been identified which could be used to fight malaria.
Wednesday, August 27, 2014
Ubiquitous Protein Controls Copying of Resistant DNA
Researchers have demonstrated how the protein could put antibiotic-resistant bugs in handcuffs.
Monday, June 09, 2014
Cancer’s Thirst For Copper Can Be Targeted
Drugs used to block copper absorption for a rare genetic condition may find an additional use as a treatment for certain types of cancer.
Thursday, April 10, 2014
Scientific News
NIH Study Finds Calorie Restriction Lowers Some Risk Factors for Age-Related Diseases
Two-year trial did not produce expected metabolic changes, but influenced other life span markers.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!