Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

DNA and Quantum Dots: All That Glitters is Not Gold

Published: Thursday, February 07, 2013
Last Updated: Wednesday, January 30, 2013
Bookmark and Share
Researchers have shown that the intensity of a quantum dot's fluorescence can be predictably increased or decreased.

This breakthrough opens a potential path to using quantum dots as a component in better photodetectors, chemical sensors and nanoscale lasers. Anyone who has tried to tune a radio knows that moving their hands toward or away from the antenna can improve or ruin the reception. Although the reasons are well understood, controlling this strange effect is difficult, even with hundred-year-old radio technology. Similarly, nanotechnology researchers have been frustrated trying to control the light emitted from quantum dots, which brighten or dim with the proximity of other particles.

The NIST team developed ways to accurately and precisely place different kinds of nanoparticles near each other and to measure the behavior of the resulting nanoscale constructs. Because nanoparticle-based inventions may require multiple types of particles to work together, it is crucial to have reliable methods to assemble them and to understand how they interact.

The researchers looked at two types of nanoparticles, quantum dots, which glow with fluorescent light when illuminated, and gold nanoparticles, which have long been known to enhance the intensity of light around them. The two could work together to make nanoscale sensors built using rectangles of woven DNA strands, formed using a technique called "DNA origami."

These DNA rectangles can be engineered to capture different types of nanoparticles at specific locations with a precision of about one nanometer. Tiny changes in the distance between a quantum dot and a gold nanoparticle near one another on the rectangle cause the quantum dot to glow more or less brightly as it moves away from or toward the gold. Because these small movements can be easily detected by tracking the changes in the quantum dot's brightness, they can be used to reveal, for example, the presence of a particular chemical that is selectively attached to the DNA rectangle. However, getting it to work properly is complicated, says NIST's Alex Liddle.

"A quantum dot is highly sensitive to the distance between it and the gold, as well as the size, number and arrangement of the gold particles," says Liddle, a scientist with the NIST Center for Nanoscale Science and Technology. "These factors can boost its fluorescence, mask it or change how long its glow lasts. We wanted a way to measure these effects, which had never been done before."

Liddle and his colleagues made several groups of DNA rectangles, each with a different configuration of quantum dots and gold particles in a solution. Using a laser as a spotlight, the team was able to follow the movement of individual DNA rectangles in the liquid, and also could detect changes in the fluorescent lifetime of the quantum dots when they were close to gold particles of different sizes. They also showed that they could exactly predict the lifetime of the fluorescence of the quantum dot depending on the size of the nearby gold nanoparticles.

While their tracking technique was time consuming, Liddle says that the strength of their results will enable them to engineer the dots to have a specific desired lifetime. Moreover, the success of their tracking method could lead to better measurement methods.

"Our main goals for the future," he concludes, "are to build better nanoscale sensors using this approach and to develop the metrology necessary to measure their performance."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Forensic Facial Examiners Can Be Near Perfect
In what might be the first face-off of its kind, trained forensics examiners from the FBI and law enforcement agencies worldwide were far more accurate in identifying faces in photographs than nonexperts and even computers.
Wednesday, September 30, 2015
Contactless Fingerprint Technology is Coming
Quickly moving through security checkpoints by showing your hand to a scanner seems straight out of science fiction, but NIST is working with industry to bring fast, touchless fingerprint readers out of the lab and into the marketplace.
Tuesday, September 08, 2015
Determining the Age of Fingerprints
Watch the imprint of a tire track in soft mud, and it will slowly blur, the ridges of the pattern gradually flowing into the valleys. Researchers have tested the theory that a similar effect could be used to give forensic scientists a way to date fingerprints.
Wednesday, August 26, 2015
New Members of U.S National Commission on Forensic Science Announced
The U.S. Department of Justice (DOJ) and the U.S. Department of Commerce’s National Institute of Standards and Technology (NIST) today announced six appointments to the National Commission on Forensic Science.
Friday, August 07, 2015
Giving Cancer a Deadly Fever
Heat may be the key to killing certain types of cancer, and new research has yielded unexpected results that should help optimize the design of magnetic nanoparticles that can be used to deliver heat directly to cancerous tumors.
Thursday, June 18, 2015
Center for Improving Statistical Analysis of Forensic Evidence
The U.S. Commerce Department’s National Institute of Standards and Technology has awarded Iowa State University up to $20 million over five years to establish a Forensic Science Center of Excellence focused on pattern and digital evidence.
Tuesday, June 09, 2015
Measuring Volumes of Key 'Lab on a Chip' Components
NIST found a combination of techniques to effectively measure microfluidic channels, achieving an accuracy of within 5 percent for both a channel's depth and its bottom's width.
Wednesday, April 22, 2015
NMR ‘Fingerprinting’ for Monoclonal Antibodies
Study by NIST researchers shows the use of NMR spectroscopy for measuring the structural congfiguration of monoclonal antibodies.
Thursday, April 16, 2015
Ultra-enriched Silicon Paves the Road to Quantum Computing
Using a relatively straightforward technique, a team of NIST researchers has created what may be the most highly enriched silicon currently being produced.
Wednesday, August 13, 2014
NIST, County Crime Lab Team Up on Ballistics Research
Partnership will contribute to a collection of topographic data from thousands of fired bullets and cartridge cases.
Tuesday, August 12, 2014
NIST Instrument Enables High-speed Chemical Imaging of Tissues
Researchers have demonstrated a dramatically improved technique for analyzing biological cells and tissues based on characteristic molecular vibration "signatures."
Wednesday, July 23, 2014
NIST Names Members of Forensic Science Resource Committees
The new members, selected for their expertise in law, psychology and quality assurance, will serve on three advisory committees.
Thursday, July 17, 2014
New NIST Metamaterial Gives Light a One-Way Ticket
The device could someday play a role in optical information processing and in novel biosensing devices.
Thursday, July 03, 2014
Technique Offers Arson Investigators Faster, More Accurate Results
The new process for analyzing debris for traces of fire accelerants is faster and more accurate than conventional methods and produces less waste.
Tuesday, June 17, 2014
NIST Presents an Infrastructure Plan to Strengthen Forensic Science Committees
NIST forensic science experts presented a plan for a new Organization of Scientific Area Committees (OSAC) at the first meeting of the National Commission on Forensic Science in Washington, D.C.
Sunday, February 09, 2014
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Using Drug-Susceptible Parasites to Fight Drug Resistance
Researchers at the University of Georgia have developed a model for evaluating a potential new strategy in the fight against drug-resistant diseases.
Boosting Breast Cancer Treatment
To more efficiently treat breast cancer, scientists have been researching molecules that selectively bind to cancer cells and deliver a substance that can kill the tumor cells, for several years.
New Gene Map Reveals Cancer’s Achilles’ Heel
Team of researchers switches off almost 18,000 genes
New Discovery Sheds Light on Disease Risk
Gaps between genes interact to influence the risk of acquiring disease.
How Cells ‘Climb’ to Build Fruit Fly Tracheas
Mipp1 protein helps cells sprout “fingers” for gripping.
Research Finding Could Lead to Targeted Therapies for IBD
Findings published online in Cell Reports.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos