Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

BioChemics Awarded Patent for Development of Bifunctional Synthetic Molecules

Published: Thursday, January 31, 2013
Last Updated: Thursday, January 31, 2013
Bookmark and Share
A novel drug delivery and efficacy enhancement technology.

BioChemics announced today that it has received a patent for a new breakthrough drug delivery technology. This technology called Bifunctional Synthetic Molecule, or BSM, involves covalently bonding two existing different molecules together to create a unique, new and chemically-stable molecule which contains desired physicochemical properties for the purpose of enhanced dermal, or other tissue, penetration. BSM also provides co-localization of the different components of the new molecule in the target tissue at the same time, further enhancing efficacy of the drug.

These new molecules allow BioChemics to create new chemical entities (NCE’s) with bifunctional characteristics that are, in some examples, designed to have superior tissue penetration properties and tissue targeting properties. In other examples, the BSM is designed to have a covalent bond that is both tissue-specific and enzyme-labile that releases the different functionalities of the BSM once it is deposited at the target tissue. The multiple functionalities, impacting the target tissue simultaneously, boosts efficacy and enhances disease therapy. We believe that this technology gives BioChemics the potential to re-engineer many existing drugs creating new classes of pharmaceutical agents that have an enhanced efficacy, enhanced pharmacology, and improved safety profiles. The BSM technology is designed to enhance the delivery of drugs and to improve the therapeutic index of the drug by promoting the optimal tissue distribution for maximum therapeutic impact.

“I am excited that we have been awarded this new technology,” said John Masiz, President of BioChemics Inc. “This technology may allow us to create ‘smart drugs’ that have the ability to find the specific diseased tissue target in the body and then concentrate the active drug into that specific tissue for a better therapeutic event. Further, this technology may minimize side effects since non-targeted tissue will not be impacted. This new system continues to build on BioChemics’ predecessor VALE technology and further confirms that advances in drug delivery will be the major source of pharmaceutical advancement over the next decade.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Computer Model Could Explain how Simple Molecules Took First Step Toward Life
Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!