Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

BioChemics Awarded Patent for Development of Bifunctional Synthetic Molecules

Published: Thursday, January 31, 2013
Last Updated: Thursday, January 31, 2013
Bookmark and Share
A novel drug delivery and efficacy enhancement technology.

BioChemics announced today that it has received a patent for a new breakthrough drug delivery technology. This technology called Bifunctional Synthetic Molecule, or BSM, involves covalently bonding two existing different molecules together to create a unique, new and chemically-stable molecule which contains desired physicochemical properties for the purpose of enhanced dermal, or other tissue, penetration. BSM also provides co-localization of the different components of the new molecule in the target tissue at the same time, further enhancing efficacy of the drug.

These new molecules allow BioChemics to create new chemical entities (NCE’s) with bifunctional characteristics that are, in some examples, designed to have superior tissue penetration properties and tissue targeting properties. In other examples, the BSM is designed to have a covalent bond that is both tissue-specific and enzyme-labile that releases the different functionalities of the BSM once it is deposited at the target tissue. The multiple functionalities, impacting the target tissue simultaneously, boosts efficacy and enhances disease therapy. We believe that this technology gives BioChemics the potential to re-engineer many existing drugs creating new classes of pharmaceutical agents that have an enhanced efficacy, enhanced pharmacology, and improved safety profiles. The BSM technology is designed to enhance the delivery of drugs and to improve the therapeutic index of the drug by promoting the optimal tissue distribution for maximum therapeutic impact.

“I am excited that we have been awarded this new technology,” said John Masiz, President of BioChemics Inc. “This technology may allow us to create ‘smart drugs’ that have the ability to find the specific diseased tissue target in the body and then concentrate the active drug into that specific tissue for a better therapeutic event. Further, this technology may minimize side effects since non-targeted tissue will not be impacted. This new system continues to build on BioChemics’ predecessor VALE technology and further confirms that advances in drug delivery will be the major source of pharmaceutical advancement over the next decade.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!