Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Epigenetic Control of Cardiogenesis

Published: Thursday, January 31, 2013
Last Updated: Thursday, January 31, 2013
Bookmark and Share
Non-coding RNA is essential for normal embryonic cardiogenesis.

Many different tissues and organs form from pluripotent stem cells during embryonic development. To date it had been known that these processes are controlled by transcription factors for specific tissues. Scientists from the Max Planck Institute for Molecular Genetics in Berlin, in collaboration with colleagues at MIT and the Broad Institute in Boston, have now been able to demonstrate that RNA molecules, which do not act as templates for protein synthesis, participate in these processes as well. The scientists knocked down a gene for long non-coding RNA molecules (lncRNA) and thereby disrupted the development of the heart to an extent that was lethal to the embryos. Genesis of the ventral body wall was also impaired. It became apparent that the lncRNA participates in controlling transcription factors that themselves are responsible for controlling tissue- and organogenesis. The lncRNA itself thus acts as a modulating factor in these processes.

RNA molecules more than 300 nucleotides long and not exhibiting any protein-coding read frames are denoted as long non-coding RNA. They are known to interact with histone-modifying protein complexes that control the activation state of genes (activatable, active, or repressed), as well as influencing the level of their activity. This occurs, for example, through the transfer of methyl groups to histones, the DNA-packaging proteins. Modifications to the histones such as these can be copied during cell division and thus promulgate the activation state of genes from cell to cell across several stages of differentiation.

Max Planck scientists led by Bernhard Herrmann have proven for the first time that lncRNAs may also be indispensable for embryonic development. This was previously known primarily for transcription factors. They discovered an lncRNA, termed Fendrr, which is specifically formed in the progenitor cells of the heart and ventral body wall. After knocking down Fendrr in a mouse, the heart and ventral body wall were malformed, which was lethal to the embryos. The malformations first arose, however, several days after Fendrr had already been knocked down in the progenitor cells. In the case of transcription factors, the malformations appear, in contrast, after their inactivation for cells in which the gene is normally active.

This delay between the expression of the Fendrr-RNA and the appearance of the malformation can be explained by the specific effect of this new class of regulators. They influence the epigenetic control of target genes, including important transcription factors, namely by binding to histone-modifying protein complexes. Thus, they influence the fate of the descendants of cells in which they themselves were only briefly active.

The scientists now hope to locate further lncRNAs that control cardiogenesis and additional processes of embryonic development in mammals, and shed light on the mechanism of how they operate. Fendrr is probably only one of many lncRNAs that participate in epigenetic control of regulators for tissue- and organogenesis.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

An Old-New Weapon Against Emerging Chikungunya Virus
Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus.
Monday, May 16, 2016
Properties of Light Can be Controlled by Nanostructures
A study led by the UPV/EHU-University of the Basque Country professor Ángel Rubio has simulated a new device to generate terahertz radiation using carbon nanostructures.
Monday, March 14, 2016
Epigenetic Switch for Obesity
Obesity can sometimes be shut down.
Friday, January 29, 2016
A Worm with Five Faces
Max Planck scientists discover new roundworm species on Réunion.
Monday, January 04, 2016
Cooperating Bacteria Isolate Cheaters
Bacteria, which reciprocally exchange amino acids, stabilize their partnership on two-dimensional surfaces and limit the access of non-cooperating bacteria to the exchanged nutrients.
Tuesday, December 15, 2015
The Life Story of Stem Cells
A model analyses the development of stem cell numbers in the human body.
Thursday, November 12, 2015
The Linking of Molecules and Microbes
Researchers have succeeded in making antibiotic substances and their bacterial producers simultaneously visible.
Thursday, August 20, 2015
How the Lung Repairs its Wounds
Researchers have gained detailed insights into the dynamic remodeling of the tissue during lung repair.
Monday, August 10, 2015
Proteomics Identifies DNA Repair Toolbox
Max-Planck scientists identify protein profiles of DNA repair.
Tuesday, May 05, 2015
Leaf Odor Attracts Drosophila Suzukii
Beta-cyclocitral is highly attractive to fruit crop pest.
Wednesday, March 18, 2015
A Gene For Brain Size - Only Found In Humans
Following the traces of evolution: Max Planck Researchers find a key to the reproduction of brain stem cells.
Tuesday, March 03, 2015
Earliest Modern Human Sequenced
Researchers discover fragments of Neandertal DNA in the genome of a 45,000-year-old modern human from Siberia.
Friday, October 24, 2014
A New Quantum Memory on the Horizon
Sensitive measurements can be used to detect signals from an individual ion in a crystal.
Friday, May 23, 2014
Finished Heart Switches Stem Cells Off
Transcription factor Ajuba regulates stem cell activity in the heart during embryonic development.
Tuesday, July 17, 2012
A Toxic Menu
Marine worm feeds on carbon monoxide and hydrogen sulphide with the help of symbiotic bacteria.
Monday, April 30, 2012
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Manufactured Stem Cells to Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Gender Determination in Forensic Investigations
This study investigated the effectiveness of lip print analysis as a tool in gender determination.
Identifying Novel Types of Forensic Markers in Degraded DNA
Scientists have tried to verify the nucleosome protection hypothesis by discovering STRs within nucleosome core regions, using whole genome sequencing.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!