Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Rush Researchers Studying Stem Cell Therapy to Repair Damaged Cartilage

Published: Thursday, January 31, 2013
Last Updated: Thursday, January 31, 2013
Bookmark and Share
Study is nation’s first clinical study of an innovative stem cell drug, Cartistem, to repair knee cartilage damaged by aging, trauma or degenerative diseases such as osteoarthritis.

Cartistem is manufactured from mesenchymal stem cells derived from allogeneic (donor) umbilical cord blood. Umbilical cord blood is a readily accessible source of high-quality stem cells, is associated with minimal health risks and carries relatively few ethical concerns.

The stem cells are mixed with hyaluronan, a natural polymer that plays a major role in wound healing and is a building block of joint cartilage. Cartistem is surgically administered into the area of cartilage damage following an arthroscopic surgery as an adjunct to microfracture, a commonly used technique used to repair cartilage damage.

The principal investigator on the study is Brian Cole, MD, a professor in the Department of Orthopedic Surgery and anatomy and cell biology at Rush University Medical Center. Cole is the head of Rush’s Cartilage Restoration Center and is also the head team physician for the Chicago Bulls. Cole and his co-researchers will assess the drug’s safety as well as its ability to regenerate cartilage repair tissue and reduce pain in patients with localized cartilage loss in the knee.

Treating cartilage damage can be problematic because the tissue does not contain blood vessels or nerves and therefore has a limited ability to regrow. Various treatments for cartilage degeneration, such as drug therapy, arthroscopy and joint replacement, yield mixed results and are unable to regenerate damaged tissue.

The two-year, phase I/IIa study will enroll a total of 12 participants age 18 years and older, with a body mass index of less than 35. Initially, six individuals with lesions of 2 to 5 centimeters will be recruited into the study; an additional six volunteers with lesions larger than 5 centimeters will be enrolled sequentially. Each participant will undergo eligibility screening followed by a 12-month observation period to determine the safety and efficacy of the drug, with an additional long-term follow-up evaluation at 24 months.

"With a burgeoning aging, yet active population, our patients are looking for effective non-joint replacement solutions to treat their damaged knee cartilage,” Cole said. “This research is significant in that it utilizes a commonly performed operation (microfracture) in an effort to improve upon variable outcomes.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Testosterone Predominance Increases Prevalence of Metabolic Syndrome during the Menopausal Transition
Rush University Medical Center study points to testosterone instead of estrogen as the significant predictor of cardiovascular disease.
Friday, August 01, 2008
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos