Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

'Zoomable' map of poplar proteins offers new view of bioenergy crop

Published: Thursday, January 31, 2013
Last Updated: Thursday, January 31, 2013
Bookmark and Share
An extensive molecular map of poplar tree proteins from Oak Ridge National Laboratory offers new insight into the plant’s biological processes. Knowing how poplar trees alter their proteins to change and adapt to environmental surroundings could help bioenergy researchers develop plants better suited to biofuel production.

'Zoomable' map of poplar proteins offers new view of bioenergy crop

An extensive molecular map of poplar tree proteins from Oak Ridge National Laboratory offers new insight into the plant’s biological processes. Knowing how poplar trees alter their proteins to change and adapt to environmental surroundings could help bioenergy researchers develop plants better suited to biofuel production. The study is featured on the cover of January’s Molecular and Cellular Proteomics. (hi-res image)

Researchers seeking to improve production of ethanol from woody crops have a new resource in the form of an extensive molecular map of poplar tree proteins, published by a team from the Department of Energy's Oak Ridge National Laboratory.

Populus, a fast-growing perennial tree, holds potential as a bioenergy crop due to its ability to produce large amounts of biomass on non-agricultural land. Now, a study by ORNL scientists with the Department of Energy's BioEnergy Science Center has provided the most comprehensive look to date at poplar's proteome, the suite of proteins produced by a plant's cells. The study is featured on the cover of January's Molecular and Cellular Proteomics.

"The ability to comprehensively measure genes and proteins helps us understand the range of molecular machinery that a plant uses to do its life functions," said ORNL's Robert Hettich. "This can provide the information necessary to modify a metabolic process to do something specific, such as altering the lignin content of a tree to make it better suited for biofuel production. "

The ORNL research team measured more than 11,000 proteins in different parts of poplar, including mature leaves, young leaves, roots and stems. This systematic approach yielded a so-called proteome atlas, which maps out the proteins present in the various tissue types at a given point in time. Lead coauthors Paul Abraham and Richard Giannone describe how the atlas offers a broad overview of the poplar proteome and also the ability to zoom in on specific biological features, such as pathways and individual proteins.

"We tried to provide a zoomable view, like Google maps, so you can look at the system from various perspectives," Abraham said. "By having these different viewpoints, it makes it easier to mine out the relevant biological information."

Obtaining and analyzing information about plant proteomes is especially tricky, considering a plant such as poplar can potentially manufacture more than 40,000 different proteins. Unlike an organism's genome, which is the same for every cell and remains constant, the proteome varies from cell to cell and changes over time as the plant adapts to different environmental conditions.

"The analytical techniques we've demonstrated allow us to measure the range of proteins very deeply and specifically, so we can start to figure out, for instance, how the protein machinery in a leaf differs from the ones in the trunk," Hettich said. "Or we can look at a tree that's very young versus one that's very old, thus enabling us to understand how all these proteins are changing as a function of the tree growing older."

Knowing how plants change and adapt to environmental surroundings by altering their proteins could help bioenergy researchers develop poplar trees better suited to biofuel production.

"It's the proteins that directly alter the morphology, anatomy, and function of a plant cell," Abraham said. "If we can identify the proteins that create a favorable trait such as fast growth, then we can incorporate that protein or modify it to develop a superior plant with all favorable traits through transgenics."

The study's coauthors are ORNL's Robert Hettich, Paul Abraham, Richard Giannone, Rachel Adams, Udaya Kalluri and Gerald Tuskan.

BESC is one of three DOE Bioenergy Research Centers established by the DOE's Office of Science in 2007. The centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale. The three centers are coordinated at ORNL, Lawrence Berkeley National Laboratory and the University of Wisconsin-Madison in partnership with Michigan State University.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
Thursday, August 20, 2015
New Tool on Horizon for Surgeons Treating Cancer Patients
Surgeons could know while their patients are still on the operating table if a tissue is cancerous, according to researchers.
Friday, June 19, 2015
ORNL Researchers Probe Chemistry, Topography and Mechanics with One Instrument
Scientists to explore thin films of phase-separated polymers.
Wednesday, May 06, 2015
Protein Shake-Up
Researchers use neutron scattering and supercomputing to study shape of a protein involved in cancer.
Saturday, March 28, 2015
Chestnuts Roasting On An Open Fire
ORNL work with scientists funded by The American Chestnut Foundation confirms increased blight-resistance of former forest giant.
Wednesday, January 07, 2015
Methylmercury-Producing Microbes More Widespread than Realized
Microbes that live in rice paddies, northern peat bogs and other previously unexpected environments are among the bacteria that can generate highly toxic methylmercury.
Monday, September 16, 2013
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
Atriva Therapeutics GmbH Develops Innovative Flu Drug
Highly effective against seasonal and pandemic influenza.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Study Removes Cancer Doubt for Multiple Sclerosis Drug
Researchers from Queen Mary University of London are calling on the medical community to reconsider developing a known drug to treat people with relapsing Multiple sclerosis after new evidence shows it does not increase the risk of cancer as previously thought.
Self-Propelled Powder to Stop Bleeding
UBC researchers have created the first self-propelled particles capable of delivering coagulants against the flow of blood to treat severe bleeding, a potentially huge advancement in trauma care.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos