Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

'Zoomable' map of poplar proteins offers new view of bioenergy crop

Published: Thursday, January 31, 2013
Last Updated: Thursday, January 31, 2013
Bookmark and Share
An extensive molecular map of poplar tree proteins from Oak Ridge National Laboratory offers new insight into the plant’s biological processes. Knowing how poplar trees alter their proteins to change and adapt to environmental surroundings could help bioenergy researchers develop plants better suited to biofuel production.

'Zoomable' map of poplar proteins offers new view of bioenergy crop

An extensive molecular map of poplar tree proteins from Oak Ridge National Laboratory offers new insight into the plant’s biological processes. Knowing how poplar trees alter their proteins to change and adapt to environmental surroundings could help bioenergy researchers develop plants better suited to biofuel production. The study is featured on the cover of January’s Molecular and Cellular Proteomics. (hi-res image)

Researchers seeking to improve production of ethanol from woody crops have a new resource in the form of an extensive molecular map of poplar tree proteins, published by a team from the Department of Energy's Oak Ridge National Laboratory.

Populus, a fast-growing perennial tree, holds potential as a bioenergy crop due to its ability to produce large amounts of biomass on non-agricultural land. Now, a study by ORNL scientists with the Department of Energy's BioEnergy Science Center has provided the most comprehensive look to date at poplar's proteome, the suite of proteins produced by a plant's cells. The study is featured on the cover of January's Molecular and Cellular Proteomics.

"The ability to comprehensively measure genes and proteins helps us understand the range of molecular machinery that a plant uses to do its life functions," said ORNL's Robert Hettich. "This can provide the information necessary to modify a metabolic process to do something specific, such as altering the lignin content of a tree to make it better suited for biofuel production. "

The ORNL research team measured more than 11,000 proteins in different parts of poplar, including mature leaves, young leaves, roots and stems. This systematic approach yielded a so-called proteome atlas, which maps out the proteins present in the various tissue types at a given point in time. Lead coauthors Paul Abraham and Richard Giannone describe how the atlas offers a broad overview of the poplar proteome and also the ability to zoom in on specific biological features, such as pathways and individual proteins.

"We tried to provide a zoomable view, like Google maps, so you can look at the system from various perspectives," Abraham said. "By having these different viewpoints, it makes it easier to mine out the relevant biological information."

Obtaining and analyzing information about plant proteomes is especially tricky, considering a plant such as poplar can potentially manufacture more than 40,000 different proteins. Unlike an organism's genome, which is the same for every cell and remains constant, the proteome varies from cell to cell and changes over time as the plant adapts to different environmental conditions.

"The analytical techniques we've demonstrated allow us to measure the range of proteins very deeply and specifically, so we can start to figure out, for instance, how the protein machinery in a leaf differs from the ones in the trunk," Hettich said. "Or we can look at a tree that's very young versus one that's very old, thus enabling us to understand how all these proteins are changing as a function of the tree growing older."

Knowing how plants change and adapt to environmental surroundings by altering their proteins could help bioenergy researchers develop poplar trees better suited to biofuel production.

"It's the proteins that directly alter the morphology, anatomy, and function of a plant cell," Abraham said. "If we can identify the proteins that create a favorable trait such as fast growth, then we can incorporate that protein or modify it to develop a superior plant with all favorable traits through transgenics."

The study's coauthors are ORNL's Robert Hettich, Paul Abraham, Richard Giannone, Rachel Adams, Udaya Kalluri and Gerald Tuskan.

BESC is one of three DOE Bioenergy Research Centers established by the DOE's Office of Science in 2007. The centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale. The three centers are coordinated at ORNL, Lawrence Berkeley National Laboratory and the University of Wisconsin-Madison in partnership with Michigan State University.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Spectroscopy by Using Aberrations
Flaws inherent to electron microscopy used to create probes for performing novel atomic-level spectroscopy.
Friday, April 08, 2016
Cell-Free Protein Synthesis is Potential Lifesaver
Lives of soldiers and others injured in remote locations could be saved with a cell-free protein synthesis system developed at the Department of Energy’s Oak Ridge National Laboratory.
Monday, January 04, 2016
Extracting Uranium from Seawater
An ultra-high-resolution technique used for the first time to study polymer fibers that trap uranium in seawater may cause researchers to rethink the best methods to harvest this potential fuel for nuclear reactors.
Friday, December 18, 2015
Simulations Enhance Understanding of Protein Motion and Function
Supercomputing simulations at the Department of Energy’s Oak Ridge National Laboratory could change how researchers understand the internal motions of proteins that play functional, structural and regulatory roles in all living organisms.
Wednesday, December 02, 2015
Combining the Power of Mass Spectrometry & Microscopy
A tool that provides world-class microscopy and spatially resolved chemical analysis shows considerable promise for advancing a number of areas of study, including chemical science, pharmaceutical development and disease progression.
Monday, November 09, 2015
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
Thursday, August 20, 2015
New Tool on Horizon for Surgeons Treating Cancer Patients
Surgeons could know while their patients are still on the operating table if a tissue is cancerous, according to researchers.
Friday, June 19, 2015
ORNL Researchers Probe Chemistry, Topography and Mechanics with One Instrument
Scientists to explore thin films of phase-separated polymers.
Wednesday, May 06, 2015
Protein Shake-Up
Researchers use neutron scattering and supercomputing to study shape of a protein involved in cancer.
Saturday, March 28, 2015
Chestnuts Roasting On An Open Fire
ORNL work with scientists funded by The American Chestnut Foundation confirms increased blight-resistance of former forest giant.
Wednesday, January 07, 2015
Methylmercury-Producing Microbes More Widespread than Realized
Microbes that live in rice paddies, northern peat bogs and other previously unexpected environments are among the bacteria that can generate highly toxic methylmercury.
Monday, September 16, 2013
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!