Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Georgia State Researcher Gets $3.4 Million Grant to Develop Vaccine Technology Against Flu, RSV

Published: Friday, February 01, 2013
Last Updated: Friday, February 01, 2013
Bookmark and Share
Sang-Moo Kang received grant to bolster research that will lead to better flu vaccines and vaccines against respiratory syncytial virus (RSV), a disease for which there is no vaccine.

The grant from the National Institutes of Health’s (NIH) National Institute of Allergy and Infectious Diseases will aid Kang’s research in developing a virus-like particle, or VLP, vaccine technology.

VLPs mimic viruses, but are non-infectious, which allows for safer vaccines, especially for young children, elderly people and patients whose immune systems are compromised. VLPs trigger the immune system to respond, leading to immunity in the same way that regular vaccines made with whole viruses act.

“VLPs are a result of new technology using recombinant genetic engineering,” Kang said. “VLP technology can manipulate pathogens in a safe way so that we can design a vaccine mimicking the shape and structure of a virus.

“A VLP is an empty particle without the genetic information of a pathogen, thus highlighting its safety.”

The potential of this research could lead to not only better vaccines for influenza, which is potentially deadly in some patients and which has led to deaths during this year’s flu season, but also RSV.

RSV is a respiratory virus that infects the lungs and breathing passages. Most healthy people can recover from RSV infection in one to two weeks, but infections can be severe in young children, infants and older adults.

According to the Centers for Disease Control and Prevention, about 75,000 to 125,000 hospitalizations related to RSV occur among children under one year old, and RSV infection results in about 1.5 million outpatient medical visits among children under the age of five.

Kang’s lab will test VLP technology and ways to deliver the vaccines without long needles, such as nasal delivery, microneedles and oral vaccination.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fast, Simple Test for Colitis
A minimally invasive screening for ulcerative colitis using emerging infrared technology could be a rapid and cost-effective method for detecting disease that eliminates the need for biopsies and intrusive testing of the human body.
Monday, May 16, 2016
New Discoveries In Primary Pathway for Neurological Diseases
Discovery could lead to new drug design for neurodegenerative diseases.
Monday, January 26, 2015
Preventing and Curing Rotavirus Infection
Rotavirus infection could be prevented and cured by activating the innate immune system with flagellin.
Monday, November 17, 2014
New Target To Stop Cancer’s Spread Discovered By Georgia State University Scientists
Disrupting a key interaction between two types of proteins in cells inhibits the spread of cancerous cells, providing researchers with a new pathway toward developing cancer-fighting drugs.
Monday, February 04, 2013
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!