" "
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Identify Molecular Link between Metabolism and Breast Cancer

Published: Wednesday, February 06, 2013
Last Updated: Wednesday, February 06, 2013
Bookmark and Share
A protein associated with conditions of metabolic imbalance, such as diabetes and obesity, may play a role in the development of aggressive forms of breast cancer.

Metabolic imbalance is often caused by elevated carbohydrate intake, which can lead to over-activating a molecule called C-terminal binding protein (CtBP). This over-activation, in turn, can increase the risk of breast cancer. Results of their work appeared in Nature Communications, Feb. 5, 2013.

“Modifying diet and maintaining a healthy diet, combined with developing pharmacological ways of lessening CtBP activity, may one day lead to a way to break the link between cancer and obesity,” said Kevin Gardner, M.D., Ph.D., head of NCI’s Transcription Regulation Section, Genetics Branch.

It has been known, primarily through population based studies, that there is a strong link between obesity and cancer. But the mechanism behind this link has been uncertain. A previous study conceived and carried out in Gardner’s laboratory found that CtBP repressed expression of a gene associated with breast cancer (BRCA1) at an early age by sensing when the cell was in a high metabolic state that, in turn, led to processing large amounts of carbohydrates in the body.

This early study suggested that obesity and weight gain may contribute to breast cancer by decreasing the level of the BRCA1 tumor suppressor gene expression in response to high carbohydrate intake. This explains, in part, why women who have hereditary mutations of BRCA1 also experience an increased risk of breast cancer if they gain weight.

Gardner’s new study expands upon his past work. He analyzed prior gene expression studies to determine if gene pathways, repressed by CtBP, were diminished in breast cancer patients who suffered from more aggressive clinical outcomes. Gardner’s team began first with the human breast cancer cells in the laboratory. They measured the association of CtBP and the genes it bound to in order to regulate expression. The researchers combined this approach with genome sequencing to confirm how, and where, CtBP bound to genes associated with breast cancer. Next, they integrated analyses with gene expression studies in cells in which they observed decreased the levels of CtBP by RNA interference (a process that inhibits gene expression), or by decreasing carbohydrate feeding of the cells.

The scientists found that, under conditions where they decreased the levels of CtBP, DNA repair increased and the cells developed stability and growth control. They determined that gene pathways targeted by CtBP were also disrupted in more aggressive breast cancers. Moreover, patients with high levels of CtBP in their tumors had shortened survival. And they showed that a small molecular inhibitor previously shown to bind to CtBP was able to reverse the gene-repressive effects of CtBP in breast cancer cells even under conditions of high carbohydrate feeding.

“Our new work suggests that targeting CtBP may provide a way of treating breast cancer and possibly preventing breast cancer,” said Gardner. “Research should continue to focus on the link between obesity, CtBP and breast cancer. This will require more population-based studies and multi-disciplinary teams of scientist to investigate these links.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Trying to Conceive Soon After a Pregnancy Loss May Increase Chances of Live Birth
NIH study finds no reason for delaying pregnancy attempts after a loss without complications.
Wednesday, January 13, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
NIH-funded Memory Drug Moves into Phase 1 Clinical Study
Collaboration between NIH and Tetra Discovery Partners leads to development of treatment that may affect cognition.
Monday, January 04, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Scientific News
Criminal Justice Alcohol Program Linked to Decreased Mortality
Institute has announced that in the criminal justice alcohol program deaths dropped by 4.2 percent over six years.
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
'Molecular Movie' Opens Door to New Cancer Treatments
An international team of scientists led by the University of Liverpool has produced a 'structural movie' revealing the step-by-step creation of an important naturally occurring chemical in the body that plays a role in some cancers.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Madison Researchers Begin Work on Zika Virus
Work will start with basic questions about Zika virus infection.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!