Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Changes to DNA On-Off Switches Affect Cells' Ability to Repair Breaks

Published: Wednesday, February 06, 2013
Last Updated: Wednesday, February 06, 2013
Bookmark and Share
Many proteins are involved in everyday DNA repair, but if they are mutated, the repair system breaks down and cancer can occur.

Cells have two complicated ways to repair these breaks, which can affect the stability of the entire genome. Roger A. Greenberg, M.D., Ph.D., associate investigator, Abramson Family Cancer Research Institute and associate professor of Cancer Biology at the Perelman School of Medicine, University of Pennsylvania, together with postdoctoral researcher Jiangbo Tang Ph.D. and colleagues, found a key determinant in the balance between two proteins, BRCA1 and 53BP1, in the DNA repair machinery. Breast and ovarian cancer are associated with a breakdown in the repair systems involving these proteins. Their findings appear in the latest online issue of Nature Structural & Molecular Biology.

The two proteins, BRCA1 and 53BP1, control which of two cell-repair mechanisms will be used: homologous recombination or non-homologous end-joining, technically speaking. This competition has proven to be a key factor in determining whether a cell becomes cancer prone as well as how a cancer cell will respond to chemotherapy.

The key step of the balance is acetylation, the chemical process of adding a compound called an acetyl group to other cellular molecules.

The researchers asked what cell signals determine whether BRCA or 53BP1 predominates at a DNA break site.

DNA in the nucleus is tightly packed around proteins called histones. Acetylation at a specific spot on histone H4 determines the answer. If H4 is acetylated at a specific location, then 53BP1 binding near the broken DNA region is strongly reduced. This leaves BRCA1 free to do the work, kicking in the homologous recombination tool to repair the break.

On the other hand, if acetylation is reduced, 53BP1 outcompetes BRCA1 at a break and the non-homologous end-joining tool repairs the break.

This mechanism can help explain resistance to a promising chemotherapy called PARP inhibition seen in patients and mouse models with BRCA1 mutations. Work from several other research teams surprisingly has shown that if neither BRCA nor 53BP1 are available, then the homologous recombination system goes into action even in the absence of BRCA1 and BRCA1 mutant cancer cells become resistant to PARP inhibitors.

Because of this, Greenberg says, there are some possible applications for making PARP chemotherapy more sensitive: “If you could inhibit specific acetylation events, then a patient’s response to PARP inhibitors might be enhanced by hyperactivating 53BP1 binding to breaks in the context of BRCA1 deficient cancers. What’s more, measuring the levels of acetylation at H4 might predict how responsive an individual is to PARP inhibitors.”

“The story didn’t fall into place the way we thought it would,” says Greenberg. “We didn’t realize that it was a combination of two epigenetic marks that drives the repair system. However, we were able to show that 53BP1 doesn’t bind well to regions of histone H4 that are acetylated at a specific location on H4. Collaboration with Georges Mer, a structural biologist at the Mayo Clinic, helped provide the molecular basis for these findings. We think there will be further complexity to this regulation, creating the possibility for the discovery of additional mechanisms that regulate DNA repair pathways and response to therapy and potential new targets for diagnosis and therapy.”

Co-authors are Nam Woo Cho, Erica M. Manion, Niraj M. Shanbhag, all from Penn, and Gaofeng Cui, Maria Victoria Botuyan, and Georges Mer, from the Department of Biochemistry and Molecular Biology, Mayo Clinic.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Questions Presence in Blood of Heart-Healthy Molecules from Fish Oil Supplements
A new study from the Perelman School of Medicine at the University of Pennsylvania questions the relevance of fish oil-derived SPMs and their purported anti-inflammatory effects in humans.
Monday, August 03, 2015
Limber Lungs: One Type of Airway Cell Can Regenerate Another Lung Cell Type
Findings from animal study have implications for disorders such as chronic obstructive pulmonary disease.
Tuesday, April 14, 2015
New Approach to Promote Regeneration of Heart Tissue
Study in animal model paving way forward for tissue repair.
Thursday, March 19, 2015
Penn Researchers Tame the Inflammatory Response in Kidney Dialysis
Researchers temporarily suppress complement during dialysis to avoid these problems.
Saturday, December 13, 2014
First Atlas of Body Clock Gene Expression in Mammals Informs Timing of Drug Delivery
Penn Medicine study has implications for 100 top-selling US drugs, half of which target daily-oscillating genes.
Thursday, October 30, 2014
Study Identifies Potential Treatment Target for Cocaine Addiction
Small change in receptor subunit reduces cocaine seeking in an animal model of addiction.
Thursday, October 30, 2014
Funding for DNA Vaccines to Fight Infectious Disease
DARPA awards $12 million to Penn-led group to develop synthetic DNA vaccines to fight infectious disease.
Wednesday, October 22, 2014
Personalized Cellular Therapy Achieves Complete Remission in 90 Percent of ALL Patients Studied
University of Pennsylvania and Children's Hospital of Philadelphia studies reveal unprecedented results with investigational therapy made from patients' own immune cells.
Friday, October 17, 2014
Ovarian Cancer Oncogene Found in "Junk DNA"
The study is published online in this week in Cancer Cell.
Wednesday, September 10, 2014
Activating Pathway Could Restart Hair Growth in Dormant Hair Follicles
Manipulation of the Wnt/ß-catenin signaling pathway could provide therapeutic targets for hair loss, unwanted hair growth and skin cancer.
Tuesday, December 10, 2013
Researchers Identify Four New Genetic Risk Factors for Testicular Cancer
Large, first-of-its-kind study finds genomic regions associated with higher risk.
Wednesday, May 15, 2013
Newly Described Type of Immune Cell and T Cells Share Similar Path to Maturity
Better understanding of cells' development has implications in study of inflammatory diseases.
Wednesday, May 15, 2013
T-Cell Therapy Eradicates an Aggressive Leukemia in Two Children
CHOP/Penn Medicine oncology team reports complete remission in pediatric ALL patients.
Tuesday, March 26, 2013
Study Confirms No Transmission of Alzheimer's Proteins between Humans
No evidence to show that proteins can spread around within the brain or between animals and humans.
Wednesday, February 06, 2013
Recently Identified Immune Cells Possible Therapeutic Target for Eczema
The increasing incidence of allergic skin diseases have spurred researchers to look for better ways to control these immune system-based disorders.
Wednesday, February 06, 2013
Scientific News
13 Ways to Stop an Unseen Force from Disrupting Weighing
Download a free Mettler Toledo paper to discover how to halt static’s negative effects before the next weigh-in.
Flinders Ig Nobel Winner Cracks Global Anaesthetic
One of the world’s most in-demand anaesthetics can now be produced on the spot, thanks to the thermos-flask sized device that recently won Flinders University inventor Professor Colin Raston an Ig Nobel prize.
Resurrected Proteins Double Their Natural Activity
Researchers demonstrate method for reviving denatured proteins.
Genes That Protect African Children From Developing Malaria Identified
Variations in DNA at a specific location on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.
Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Scientists Decode Structure at Root of Muscular Disease
Researchers at Rice University and Baylor College of Medicine have unlocked the structural details of a protein seen as key to treating a neuromuscular disease.
Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
New Test Detects All Viruses
A new test detects virtually any virus that infects people and animals, according to research at Washington University School of Medicine in St. Louis, where the technology was developed.
Inroads Against Leukemia
Potential for halting disease in molecule isolated from sea sponges.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos