Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Antibody Hinders Growth of Gleevec-Resistant Gastrointestinal Tumors in Lab Test

Published: Thursday, February 07, 2013
Last Updated: Thursday, February 07, 2013
Bookmark and Share
An antibody that binds to a molecule on the surface of a rare but deadly tumor of the gastrointestinal tract inhibits the growth of the cancer cells in mice.

The effect remains even when the cancer cells have become resistant to other treatments, and the findings may one day provide a glimmer of hope for people with the cancer, known as gastrointestinal stromal tumor, or GIST. The scientists hope to move into human clinical trials of the antibody within two years.

The antibody’s target is a receptor called KIT, which is often mutated in patients with the cancer. When mutated, KIT sends a continuous stream of messages into the cell urging it to grow uncontrollably. The Stanford researchers found that the antibody reduces the amount of KIT on the surface of the cancer cells and stimulates immune cells called macrophages to kill the rogue cells.

Currently, people with GIST are often treated first with surgery and then with the drug imatinib, marketed as Gleevec — a small molecule that also targets KIT. The treatment, which was approved for GIST in 2002, has been remarkably successful: It has increased the average survival time of many people with advanced disease from about 18 months to about five years. It was the first targeted small molecule inhibitor that proved effective against a solid tumor, but its effect is temporary.

“Gleevec, or imatinib, marked a paradigm shift in our understanding about cancer treatment and sparked much additional research into these inhibitors,” said Matt van de Rijn, MD, PhD, professor of pathology. “However, a new mutation almost always occurs over time in KIT that renders the tumor insensitive to the drug. We’ve found that treatment of these resistant cells with an antibody targeting KIT slows the growth of human GIST cells in cell culture and in animals, and increases their chances of being removed by the immune system.”

The researchers believe it may be possible that the anti-KIT antibody treatment could be used as an alternative to, or even in combination with, imatinib or other small-molecule or antibody-based therapies to provide better control of the cancer.

“We’re moving from an era in which, historically, patients are often treated with a single agent or class of agents into a time when tumors might be treated with more than one approach from the moment of diagnosis,” said van de Rijn.

He is a co-senior author of the study, which will be published online Feb. 4 in the Proceedings of the National Academy of Sciences. Irving Weissman, MD, director of Stanford’s Institute for Stem Cell Biology and Regenerative Medicine, is the other co-senior author. Former graduate student Badreddin Edris, PhD, postdoctoral scholar Stephen Willingham, PhD, and graduate student Kipp Weiskopf share first authorship of the paper. Weissman is also a member of Stanford’s Cancer Institute.

About 3,000 to 6,000 people per year are diagnosed with GIST in the United States. Seventy to 80 percent of these cancers have what’s called an activating mutation in the cell surface receptor called KIT. This mutation causes the receptor to bombard the cells with the signal to proliferate and drives tumor growth. Although imantinib binds to KIT and inactivates its signaling — resulting in the temporary control of the disease in about 80 percent of cases — the receptor will nearly always develop a new mutation that renders it resistant to the small molecule.

Researchers in the van de Rijn and Weissman labs used cancer cell lines isolated from three patients with GIST for their study: Two were from patients whose tumors had become resistant to imatinib, and one was from a patient whose tumor was still sensitive to the treatment. They also used a cancer cell line from a patient with an unrelated cancer, called a leiomyosarcoma, as a control.

When they treated the cancer cells in a laboratory dish with the anti-KIT antibody, called SR1, the researchers found that the GIST tumor cells grew significantly more slowly than did the control cancer cells, regardless of their sensitivity or resistance to imatinib. When they investigated more closely, they found that the tumor cells exposed to the anti-KIT antibody expressed less KIT on their surface than did untreated cells. Furthermore, all three of the antibody-treated GIST cell lines were significantly more likely to be enveloped and destroyed by a type of immune cell called a macrophage than were untreated or control cancer cells.

To confirm their findings, the researchers genetically engineered the three GIST tumor cell lines to express proteins that emit colored light under certain conditions. This allowed them to track the growth and location of the cells in living laboratory animals over time. They injected the engineered cells into the abdominal cavities of mice, waited two weeks for the cancer cells to become established and then treated the animals with the anti-KIT antibody.

“Although the tumors from the imatinib-resistant cell lines continued to grow, their growth rate was reduced by about 10-fold when compared to that observed in untreated animals,” said van de Rijn.

The researchers are now planning to investigate whether a combination treatment of anti-KIT plus imatinib, or anti-KIT plus an antibody that targets a cell-surface molecule called CD47 previously identified in Weissman’s laboratory, will further inhibit tumor growth. (Anti-CD47 treatment has been shown to block a “don’t eat me” signal expressed by many types of cancer cells that protects them against macrophages.)

Coupling anti-CD47 with another treatment such as anti-KIT that appears to enhance the engulfment of the cancer cells by macrophages may provide a synergistic effect against the tumor, the researchers believe. A similar approach was shown to cure aggressive non-Hodgkin’s lymphoma in mice in Weissman’s lab in 2010.

Other Stanford researchers involved in the study include postdoctoral scholar Anne Volkmer, MD; instructor Jens-Peter Volkmer, MD; technician Kelli Montgomery; research assistant Humberto Contreras-Trujillo; former medical student Agnieszka Czechowicz, MD, PhD; and associate professor of pathology Robert West, MD, PhD.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Flexible Gene Expression May Regulate Social Status
Scientists show how the selective expression of genes through epigenetics can regulate the social status of African cichlid fish.
Monday, January 11, 2016
World Forest Carbon Stocks Overestimated
Researchers with The Natural Capital Project show how fragmentation harms forests' ability to store carbon; more restoration is needed to reconnect forest patches.
Tuesday, January 05, 2016
U.S. Needs a New Approach for Governance of Risky Research
The United States needs better oversight of risky biological research to reduce the likelihood of a bioengineered super virus escaping from the lab or being deliberately unleashed, according three Stanford scholars.
Monday, January 04, 2016
Mapping the Mechanical Properties of Living Cells
Researchers have developed a new way to use atomic force microscopy to rapidly measure the mechanical properties of cells at the nanometer scale, an advance that could pave the way for better understanding immune disorders and cancer.
Monday, December 21, 2015
Viral Infections Leave a Signature on the Immune System
A test that queries the body’s own cells can distinguish a viral infection from a bacterial infection and could help doctors know when to use antibiotics.
Thursday, December 17, 2015
Novel Approach to Understanding Brain Function
Russell Poldrack scanned his brain to create the most detailed map of brain connectivity ever.
Monday, December 14, 2015
Accelerating Protein Evolution
A new tool enables researchers to test millions of mutated proteins in a matter of hours or days, speeding the search for new medicines, industrial enzymes and biosensors.
Monday, December 14, 2015
Blocking Dengue Fever Virus
By targeting fundamental cellular machinery, the antiviral approach developed in Judith Frydman's lab at Stanford could provide a roadmap to preventing infections that affect hundreds of millions of people every year.
Thursday, December 03, 2015
Gene Linked to Heart Failure
Researchers have identified a previously unknown association between heart function and the narcolepsy-linked orexin receptor pathway, a finding that could provide a promising direction for treatment research.
Wednesday, December 02, 2015
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Thursday, November 26, 2015
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Wednesday, November 25, 2015
Sleep Deprivation Affects Stem Cells, Reducing Transplant Efficiency
Although the research was done in mice, the findings have possible implications for bone marrow transplants, more properly called hematopoietic stem cell transplants, in humans.
Friday, October 16, 2015
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Friday, October 09, 2015
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Wednesday, October 07, 2015
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Monday, October 05, 2015
Scientific News
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Protein Protects Against Flu in Mice
The engineered molecule doesn’t provoke inflammation and may hail a new class of antivirals.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!