Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Recreating Natural Complex Gene Regulation

Published: Thursday, February 07, 2013
Last Updated: Thursday, February 07, 2013
Bookmark and Share
By reproducing in the laboratory the complex interactions that cause human genes to turn on inside cells, researchers have created a system they believe can benefit gene therapy research and the burgeoning field of synthetic biology.

This new approach should help basic scientists as they tease out the effects of “turning on” or “turning off” many different genes, as well as clinicians seeking to develop new gene-based therapies for human disease.

“We know that human genes are not just turned on or off, but can be activated to any level over a wide range. Current engineered systems use one protein to control the levels of gene activation,” said Charles Gersbach, assistant professor of biomedical engineering at Duke’s Pratt School of Engineering and member of Duke’s Institute for Genome Sciences and Policy. “However, we know that natural human genes are regulated by interactions between dozens of proteins that lead to diverse outcomes within a living system.

“In contrast to typical genetics studies that dissect natural gene networks in a top-down fashion, we developed a bottom-up approach, which allows us to artificially simulate these natural complex interactions between many proteins that regulate a single gene,” Gersbach said. “Additionally, this approach allowed us to turn on genes inside cells to levels that were not previously possible.”

The results of the Duke experiments, which were conducted by Pablo Perez-Pinera, a senior research scientist in Gersbach’s laboratory, were published on-line in the journal Nature Methods. The research was supported by the National Institutes of Health, the National Science Foundation, The Hartwell Foundation, and the March of Dimes.

Human cells have about 20,000 genes which produce a multitude of proteins, many of which affect the actions of other genes. Being able to understand these interactions would greatly improve the ability of scientists in all areas of biomedical research. However because of the complexity of this natural system, synthetic biologists create simple gene networks to have precise control over each component.  These scientists can use these networks for applications in biosensing, biocomputation, or regenerative medicine, or can use them as models to study the more complex natural systems.

“This new system can be a powerful new approach for probing the fundamental mechanisms of natural gene regulation that are currently poorly understood,” Perez-Pinera said. “In this way, we can further the capacity of synthetic biology and biological programming in mammalian systems.”

The latest discoveries were made possible by using a new technology for building synthetic proteins known as transcription activator-like effectors (TALEs), which are artificial enzymes that can be engineered to “bind” to almost any gene sequences. Since these TALEs can be easily produced, the researchers were able to make many of them to control specific genes.

“All biological systems depend on gene regulation,” Gersbach said. “The challenge facing bioengineering researchers is trying to synthetically recreate processes that occur in nature.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Enzyme Structure May Aid Antibiotic Development
Targeted enzyme is essential to every known strain of bacteria.
Wednesday, April 20, 2016
Coding and Computers Help Spot Methane, Explosives
Coded apertures improve and shrink mass spectrometers for field use.
Tuesday, April 19, 2016
Why Bearcats Smell Like Buttered Popcorn
Researchers pinpoint chemical compound that gives rare animal its popcorn-like scent.
Friday, April 15, 2016
Antibiotics Don't Promote Swapping of Resistance Genes
Bacterial resistance spreads through population dynamics, not an increase in gene transfers.
Wednesday, April 13, 2016
Genetic Elements that Drive Regeneration
Limb or organ regrowth may be hidden in our genes.
Friday, April 08, 2016
Immunity Genes Could Protect Some From E. Coli
When a child comes home from preschool with a stomach bug that threatens to sideline the whole family for days, why do some members of the family get sick while others are unscathed?
Monday, January 25, 2016
Disrupting Cell’s Supply Chain Freezes Cancer Virus
When the cancer-causing Epstein-Barr virus moves into a B-cell of the human immune system, it tricks the cell into rapidly making more copies of itself, each of which will carry the virus.
Thursday, January 21, 2016
Slow Stem Cell Division May Cause Small Brains
Delayed neural stem cells make the wrong cells during development.
Tuesday, January 12, 2016
Travelling Salesman Uncorks Synthetic Biology Bottleneck
Computer program scrambles genetic codes for production of repetitive DNA and synthetic molecules.
Thursday, January 07, 2016
Catching Cellular Impacts of Bubbles and Jets
New technique captures diverse effects of cavitation bubbles on individual cells.
Thursday, December 10, 2015
Cellular Stress Process Identified in Cardiovascular Disease
Combining the investigative tools of genetics, transcriptomics, epigenetics and metabolomics, a Duke Medicine research team has identified a new molecular pathway involved in heart attacks and death from heart disease.
Tuesday, November 10, 2015
Molecular ‘Kiss Of Death’ Flags Pathogens For Destruction
Researchers have discovered that our bodies mark pathogen-containing vacuoles for destruction by using a molecule called ubiquitin, commonly known as the "kiss of death."
Wednesday, September 30, 2015
Newly Identified Biochemical Pathway Could Be Target for Insulin Control
Researchers at Duke Medicine and the University of Alberta are reporting the identification of a new biochemical pathway to control insulin secretion from islet beta cells in the pancreas, establishing a potential target for insulin control.
Tuesday, September 29, 2015
Protein Structures Assemble and Disassemble On Command
Gene sequences may enable control of building bio-structures.
Wednesday, September 23, 2015
Molecular Tinkering Doubles Cancer Drug’s Efficacy
Researchers have packaged a widely used cancer drug into nanoparticles, more than doubling its effectiveness at destroying tumors.
Thursday, August 06, 2015
Scientific News
Improving Natural Killer Cancer Therapy
Vanderbilt University researchers discover transcription factor critical for NK cell expansion. Findings could lead to increased therapeutic efficacy.
Molecular Mechanism For Generating Specific Antibody Responses Discovered
Study could spur more ways to treat autoimmune disease, develop accurate vaccines.
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
Autism and Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
FNIH Launches Project to Evaluate Biomarkers in Cancer Patients
Company has announced that it has launched a new project to evaluate the effectiveness of liquid biopsies as biomarkers in colorectal cancer patients.
Flowering Regulation Mechanism Discovered
Monash researchers have discovered a new mechanism that enables plants to regulate their flowering in response to raised temperatures.
Turning Skin Cells into Heart, Brain Cells
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!