Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Finds Potential to Match Tumors with Known Cancer Drugs

Published: Friday, February 08, 2013
Last Updated: Friday, February 08, 2013
Bookmark and Share
Mapping the landscape of kinases could aid in new world of personalized cancer treatment.

When it comes to gene sequencing and personalized medicine for cancer, spotting an aberrant kinase is a home run. The proteins are relatively easy to target with drugs and plenty of kinase inhibitors already exist.

Now in a new study, University of Michigan Comprehensive Cancer Center researchers assess the complete landscape of a cancer’s “kinome” expression and determine which kinases are acting up in a particular tumor. They go on to show that those particular kinases can be targeted with drugs – potentially combining multiple drugs to target multiple kinases.

“We have a small but effective inventory of ‘druggable’ mutations that we know play a role in cancer. As we are doing more sequencing, we’re coming to realize just how small that inventory is. On the one hand, it’s a limitation. On the other hand, there are numerous oncogenic kinases, and there are a lot of kinase inhibitors. Our goal is to determine how to match more of these therapies with the right patients,” says senior study author Chandan Kumar-Sinha, Ph.D., research assistant professor at the Michigan Center for Translational Pathology.

The researchers looked at RNA sequencing data from 482 samples of both cancerous and non-cancerous tissue and identified the most highly expressed kinases in individual breast cancer and pancreatic cancer samples. They found certain common themes.

“A lot of samples showed one or two kinases that showed an outstandingly high ‘outlier’ expression,” says Kumar-Sinha. It wasn’t that the researchers always found a mutation – just that one or more kinases were expressed at a far higher level than all other kinases.

“We don’t always know what’s causing it to be overexpressed. But since it’s there, we know that somehow the high expression of oncogenic kinases is advantageous to the cancer, and so we can therapeutically exploit that dependency,” Kumar-Sinha says.

Results of the study appear online in the journal Cancer Discovery.

In breast cancer, the researchers spotted outlier expression of ERBB2 kinase in HER2-positive tumors, which would be expected. HER2-positive tumors can be treated with Herceptin. But they also found another kinase, called FGFR4 – and they found that adding a drug that blocks FGFR4, in combination with Herceptin, improved the anti-cancer effect. This was done only in cells in the laboratory, but the FGFR4-inhibitor continued to be effective in cells even after they became resistant to Herceptin.

In the pancreatic cancer samples, the researchers found several different kinases that have drugs that work against them, including MET, AKT and PLK. Pancreatic cancer is one of the most deadly types of cancer, often diagnosed in its late stages when treatments are not very effective. The main driver of pancreatic cancer, a mutation in a gene called KRAS, has proven difficult to target with treatments.

In the lab, researchers blocked the outlier kinases and found it had an effect against the cancer cells. They then blocked KRAS – something that can be done in the lab but has not been achieved in patients with pancreatic cancer – and found an even larger effect.

“If in the future we could target KRAS in patients and also hit the outlier kinases, it could have a huge impact on treatment of pancreatic cancer,” Kumar-Sinha says.

These findings must still be tested in patients, but researchers are hopeful that targeting specific kinases expressed in an individual patient’s tumor could make a difference.

The U-M Comprehensive Cancer Center is currently using gene sequencing techniques to help match advanced cancer patients with potential clinical trial opportunities based on the make-up of their tumor.

“We hope kinases will represent another available avenue with whole genome sequencing. If we can identify rational multiple targets for treatment, it’s more effective. This gets us one of those targets,” Kumar-Sinha says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Monday, September 26, 2016
Arms Race with a Superbug
Scientists have discovered that increased risk of superbug infection can be directly casued by immune system response to invading bacteria.
Friday, September 16, 2016
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
Friday, May 06, 2016
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Friday, April 29, 2016
Ancient Viruses Lurk in Our DNA
One whole endogenous retrovirus genome -- and bits of 17 others -- were spotted in a study of 2,500 human genomes.
Thursday, March 24, 2016
Making Stem Cells 'Embryonic' Again
Research in mice shows for the first time that erasing epigenetic markers on chromatin can return stem cells to original state.
Monday, March 21, 2016
Lead Exposure Changes Gut Microbiota
Exposure to lead during early development can alter the the gut microbiota, increasing the chances for obesity in adulthood, researchers from the University of Michigan School of Public Health have found.
Monday, March 14, 2016
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
Wednesday, January 27, 2016
Silencing X Chromosomes
Work could lead to ways to counteract X-linked diseases in girls and women.
Tuesday, January 12, 2016
Precision Medicine for Penile Cancer
Defining the genomic landscape reveals similarities with other squamous cell cancers.
Thursday, December 17, 2015
New Method to Purify Water
The method sounds like a salad dressing recipe: take water, sprinkle in nanomaterials, add oil and shake.
Monday, December 14, 2015
X Chromosome Discovery Could Aid Research on Many Sex-Linked Disorders
U-M researchers find new way for RNA to regulate genetic activity.
Thursday, October 22, 2015
A New Factor in Depression?
Study in humans & rats shows more physical changes in depressed brains.
Thursday, September 10, 2015
Adrenals Run Amok
Each of your kidneys wears a little yellow cap that helps keep your blood pressure in check, and much more. But in some people, it starts running amok, pumping out a hormone that sends blood pressure sky-high.
Friday, August 14, 2015
What Drives Advanced Prostate Cancer?
Large international study finds 90% have anomaly that could influence treatment.
Tuesday, May 26, 2015
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Charles River Acquires Agilux
Enhances Charles River’s early-stage capabilities in bioanalytical services.
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
New Imaging Technique in Alzheimer’s Disease
Study confirms new imaging technique corresponds a higher degree of actual brain changes.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!