Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

When the Cell’s Two Genomes Collide

Published: Friday, February 08, 2013
Last Updated: Friday, February 08, 2013
Bookmark and Share
Animal cells contain two genomes: one in the nucleus and one in the mitochondria. When mutations occur in each, they can become incompatible, leading to disease.

To increase understanding of such illnesses, scientists at Brown University and Indiana University have traced one example in fruit flies down to the individual errant nucleotides and the mechanism by which the flies become sick.

Diseases from a mutation in one genome are complicated enough, but some illnesses arise from errant interactions between two genomes: the DNA in the nucleus and in the mitochondria. Scientists want to know more about how such genomic disconnects cause disease. In a step in that direction, scientists at Brown University and Indiana University have traced one such incompatibility in fruit flies down to the level of individual nucleotide mutations and describe how the genetic double whammy makes the flies sick.

“This has relevance to human disease but it’s also relevant to all organisms because these two genomes are in all animals and all plants,” said David Rand professor of biology at Brown and senior author of the study in PLoS Genetics. “There are a lot of metabolic diseases that are mitochondrial in origin and they have peculiar genetic tracking — a two-part system needs to be considered.”

Five years ago at Brown, Rand and two postdoctoral researchers — Colin Meiklejohn, of Brown and Indiana University, and Kristi Montooth, now an assistant professor at Indiana University — began searching for an example in the convenient testbed of fruit flies. They started mixing and matching mitochondrial and nuclear genomes from different strains and species of flies that carried natural mutations produced during evolution to observe what conflicts might arise. They found that when they placed the “simw 501” mitochondrial DNA from Drosophila simulans flies into Drosophila melanogaster flies with “Oregon R” nuclear DNA, bad things happened.

The flies with this combination lived but had an array of problems. Their most noticeable flaw was that whisker-like bristles on their backs were only half the length of those in normal flies. The flies also had developmental delays, reproduced less effectively, and tired more quickly, which makes sense because the mitochondria is the cell’s power plant.

Once the team, including lead author Meiklejohn, had a bona fide mitochondrial-nuclear incompatibility to study, they could then begin looking for exactly where the problem lay and how it was causing disease. In the paper, they describe the genetic and biochemical experiments they conducted to find out.

Brown graduate student Marissa Holmbeck, the paper’s second author, measured the productivity of several enzymes in the mitochondria’s power generation process. Two enzymes that are derived entirely from nuclear genes ran just as well in the sick flies as in healthy ones, but three enzymes that are jointly managed by mitochondrial and nuclear genes lagged behind in activity.

“The different complexes that are jointly encoded by the mitochondrial and nuclear subunits, those are the ones where we are seeing the defect in activity,” Holmbeck said.

Each mutation alone, in fact, does little or no harm to flies. It is only when both are present that the flies fall ill.

Meanwhile, Meiklejohn and Montooth tracked those mutations to just two altered nucleotide letters — one in each genome. In the mitochondrial genome, a G to U mutation in an RNA suggested a problem with protein production inside the mitochondria. This was confirmed when they discovered an A to V mutation in the nuclear protein that adds an amino acid to this same mitochondrial RNA.

The biochemical and genetic evidence pointed to flaws in how fast the mitochondria of the sick flies could produce proteins needed to promote growth.

“The specifics of this paper are tracking that down to the individual nucleotide,” Rand said, “But the more general lesson is that this coevolution of mitochondrial and nuclear genes has been going on for millions of years in millions of organisms and is going on in human populations today.”

In human beings, a well-known mitochondrial disease, for example, is an aversion to exercise that is due to a mutation in the same mitochondrial RNA gene the team studied in fruit flies.

Rand and his group are now conducting new experiments to trace more mito-nuclear incompatibilities within a single species to their genetic and biochemical roots.

“This paper provided proof of principle that we can identify these things and map them to their nucleotides,” Rand said. “We want to ask how common is this and can we find other sources of this kind of breakdown in mito-nuclear crosstalk underlying disease.”

In addition to Rand, Montooth, Meiklejohn, and Holmbeck, other authors on the paper are Dawn Abt of Brown and Mohammad Siddiq of Indiana.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Backs Flu Vaccinations for Elderly
Brown University researchers found vaccines well matched to the year’s flu strain significantly reduce deaths and hospitalizations compared to when the match is poor, suggesting that vaccination indeed makes a difference.
Wednesday, August 26, 2015
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
Monday, July 27, 2015
Tapeworm Drug Shows Promise Against MRSA
A new study shows that a drug already approved to fight tapeworms in people, effectively treated MRSA superbugs in lab cultures and in infected nematode worms.
Monday, April 27, 2015
A New Wrinkle For Cell Culture
Researchers at Brown University have developed an advanced technique for cell culturing that uses sheets of wrinkled graphene to mimic the complex 3-D environment inside the body.
Friday, April 24, 2015
Gold By Special Delivery Intensifies Cancer-Killing Radiation
Researchers at Brown and URI have demonstrated what could be a more precise method for targeting cancer cells for radiation.
Wednesday, April 15, 2015
DNA ‘Cage’ Could Improve Nanopore Technology
Scientists at Brown University have designed a nanoscale cage that can trap a single DNA strand and allow before-and-after sequencing of the same DNA strand in research trials.
Wednesday, February 11, 2015
New Technology Makes Tissues, Someday Maybe Organs
A new device for building large tissues from living components of three-dimensional microtissues borrows on ideas from electronics manufacturing.
Wednesday, January 07, 2015
New Research Unlocks a Mystery of Albinism
A team led by Brown University biologists has discovered the way in which a specific genetic mutation appears to lead to the lack of melanin production underlying a form of albinism.
Thursday, December 18, 2014
If CD8 T Cells Take on One Virus, They’ll Fight Others Too
The findings suggest that innate immunity changes with the body’s experience and that the T cells are more versatile than thought.
Saturday, October 25, 2014
A ‘Clear’ Choice for Clearing 3-D Cell Cultures
A new study is the first to evaluate three chemical technologies for making animal tissues see-through side-by-side for use with engineered 3-D tissue cultures.
Thursday, September 04, 2014
Study Proposes New Ovarian Cancer Targets
Researchers from Brown University propose that TAFs may be important suspects in the progression of ovarian cancer.
Friday, March 14, 2014
Gold Nanoparticles Give an Edge in Recycling CO2
It’s a 21st-century alchemist’s dream: turning Earth’s superabundance of carbon dioxide into fuel or useful industrial chemicals.
Monday, November 11, 2013
Fly Study Finds Two New Drivers of RNA Editing
A new study in Nature Communications finds that RNA editing is not only regulated by sequences and structures near the editing sites but also by ones found much farther away.
Thursday, August 08, 2013
Newly Found CLAMP Protein Regulates Genes
Protein turns out to be the missing link that allows a key regulatory complex to find and operate on the lone X chromosome of male fruit flies.
Tuesday, July 23, 2013
NMR Advance Brings Proteins into the Open
A key protein interaction had eluded scientists’ observation until a team of researchers cracked the case by combining data from four different techniques of NMR.
Wednesday, June 26, 2013
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
Investigating the Vape
Expert independent review concludes that e-cigarettes have potential to help smokers quit.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Researchers Discover Synthesis of a New Nanomaterial
Interdisciplinary team creates biocomposite for first time using physiological conditions.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!