Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cells Forged from Human Skin Show Promise in Treating MS, Myelin Disorders

Published: Tuesday, February 12, 2013
Last Updated: Tuesday, February 12, 2013
Bookmark and Share
URMC neurologist Steven Goldman to launch a clinical trial using OPCs to treat multiple sclerosis.

A study out in the journal Cell Stem Cell shows that human brain cells created by reprogramming skin cells have the potential to be highly effective in treating myelin disorders, a family of diseases that includes multiple sclerosis and rare childhood disorders called pediatric leukodystrophies.

The study is the first successful attempt to employ human induced pluripotent stem cells (hiPSC) to produce a population of cells that are critical to neural signaling in the brain.

In this instance, the researchers utilized cells crafted from human skin and transplanted them into animal models of myelin disease.

“This study strongly supports the utility of hiPSCs as a feasible and effective source of cells to treat myelin disorders,” said University of Rochester Medical Center (URMC) neurologist Steven Goldman, M.D., Ph.D., lead author of the study.

Goldman continued, “In fact, it appears that cells derived from this source are at least as effective as those created using embryonic or tissue-specific stem cells.”

The discovery opens the door to potential new treatments using hiPSC-derived cells for a range of neurological diseases characterized by the loss of a specific cell population in the central nervous system called myelin.

Like the insulation found on electrical wires, myelin is a fatty tissue that ensheathes the connections between nerve cells and ensures the crisp transmission of signals from one cell to another.

When myelin tissue is damaged, communication between cells can be disrupted or even lost.

The most common myelin disorder is multiple sclerosis, a condition in which the body’s own immune system attacks and destroys myelin.

The loss of myelin is also the hallmark of a family of serious and often fatal diseases known as pediatric leukodystrophies.

While individually very rare, collectively several thousand children are born in the U.S. with some form of leukodystrophy every year.

The source of the myelin cells in the brain and spinal cord is cell type called the oligodendrocyte. Oligodendrocytes are, in turn, the offspring of another cell called the oligodendrocyte progenitor cell, or OPC.

Myelin disorders have long been considered a potential target for cell-based therapies. Scientists have theorized that if healthy OPCs could be successfully transplanted into the diseased or injured brain, then these cells might be able to produce new oligodendrocytes capable of restoring lost myelin, thereby reversing the damage caused by these diseases.

However, several obstacles have thwarted scientists. One of the key challenges is that OPCs are a mature cell in the central nervous system and appear late in development.

“Compared to neurons, which are among the first cells formed in human development, there are more stages and many more steps required to create glial cells such as OPCs,” said Goldman. “This process requires that we understand the basic biology and the normal development of these cells and then reproduce this precise sequence in the lab.”

Another challenge has been identifying the ideal source of these cells. Much of the research in the field has focused on cells derived from tissue-specific and embryonic stem cells. While research using these cells has yielded critical insight into the biology of stem cells, these sources are not considered ideal to meet demand once stem cell-based therapies become more common.

The discovery in 2007 that human skin cells could be “reprogrammed” to the point where they returned to a biological state equivalent of an embryonic stem cell, called induced pluripotent stem cells, represented a new path forward for scientists.

Because these cells - created by using the recipient’s own skin - would be a genetic match, the likelihood of rejection upon transplantation is significantly diminished. These cells also promised an abundant source of material from which to fashion the cells necessary for therapies.

Goldman’s team was the first to successfully master the complex process of using hiPSCs to create OPCs. This process proved time consuming. It took Goldman’s lab four years to establish the exact chemical signaling required to reprogram, produce, and ultimately purify OPCs in sufficient quantities for transplantation and each preparation required almost six months to go from skin cell to a transplantable population of myelin-producing cells.

Once they succeeded in identifying and purifying OPCs from hiPSCs, they then assessed the ability of the cells to make new myelin when transplanted into mice with a hereditary leukodystrophy that rendered them genetically incapable of producing myelin.

They found that the OPCs spread throughout the brain and began to produce myelin. They observed that hiPSC-derived cells did this even more quickly, efficiently, and effectively than cells created using tissue-derived OPCs. The animals were also free of any tumors, a dangerous potential side effect of some stem cell therapies, and survived significantly longer than untreated mice.

“The new population of OPCs and oligodendrocytes was dense, abundant, and complete,” said Goldman. “In fact, the re-myelination process appeared more rapid and efficient than with other cell sources.”

The next stage in evaluating these cells - clinical studies - may not be long in the offing. Goldman, along with a team of researchers and clinicians from Rochester, Syracuse, and Buffalo, are preparing to launch a clinical trial using OPCs to treat multiple sclerosis. This group, titled the Upstate MS Consortium, has been approved for funding by New York State Stem Cell Science (NYSTEM).

While the consortia’s initial study - the early stages of which are scheduled to begin in 2015 - will focus cells derived from tissue sources, Goldman anticipates that hiPSC-derived OPCs will eventually be included in this project.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Boosting Gene Transfer Capabilities
A new and highly efficient method for gene transfer has been developed.
Friday, April 08, 2016
URMC Partners with Private Company to Create Tissue Bank for Cancer Research
This collaboration will establish a bank of human tissues and tumor samples that are expertly preserved and stored for use in cancer research.
Tuesday, February 23, 2016
URMC Partners with Indivumed
The University of Rochester Medical Center announced it’s collaborating with Indivumed, a Germany-based company, to establish a bank of human tissues and tumor samples that are expertly preserved and stored for use in cancer research.
Friday, February 05, 2016
Extra Protein Gives Naked Mole Rats More Power To Stop Cancer
A protein newly found in the naked mole rat may help explain its unique ability to ward off cancer.
Thursday, February 05, 2015
New Tools in Fight Against Virus that Attacks the Brain
Researchers have developed new insight into a rare but deadly brain infection, called progressive multifocal leukoencephalopathy (PML).
Wednesday, November 19, 2014
Scientists Coax Brain to Regenerate Cells Lost in Huntington’s Disease
The study appears in the journal Cell Stem Cell.
Tuesday, June 18, 2013
Scientists Pinpoint Earliest Steps of Common Form of Muscular Dystrophy
Findings settle a longstanding question about the roots of facioscapulohumeral muscular dystrophy or FSHD.
Friday, August 20, 2010
Wasp Genomes are Sequenced, Revealing Surprises
Parasitic wasps' newly sequenced genomes reveal new avenues for pest control, provides insights into evolution and genetics.
Monday, January 25, 2010
Scientists Discover Way to Jumpstart Bone's Healing Process
Results from the preliminary work show the enormous potential of in-body stem cells for the treatment of bone injuries.
Thursday, April 23, 2009
Environmental Toxicants Like Lead, Mercury Target Stem Cells
A research study identifies a common molecular trigger for the effects of toxicant exposure.
Wednesday, February 07, 2007
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!