Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Lyncean Technologies Inc. Sells Compact Light Source to Munich Biomedical-Imaging Research Center

Published: Tuesday, February 12, 2013
Last Updated: Tuesday, February 12, 2013
Bookmark and Share
Palo Alto-based Lyncean Technologies, Inc., announced its first sale of a Compact Light Source, a miniature synchrotron X-ray source employing state-of-the-art laser-beam and electron-beam technology.

A Lyncean "Compact Light Source" (CLS) was purchased by researchers from the newly-formed Center for Advanced Laser Applications (CALA) in Germany, a joint project of the Ludwig Maximilians University of Munich (LMU) and the Technical University Munich (TUM). The device will be fully built and tested in Lyncean's facility in Palo Alto, Calif. and delivered to Munich in early 2014.

"Today is a milestone for us," said Ronald Ruth, Lyncean's founder and Chairman of the Board. "We feel we have an innovative tool, especially as X-rays are playing a growing role in areas like structural biology, medical science, nanotech and fuel cell research. We've been fortunate to have had so much support developing the technology, but putting a CLS in the hands of scientists has always been the ultimate goal."

With its first sale to a team of researchers, Lyncean expects a growing demand by scientists and students at the forefront of biomedical X-ray imaging research. Prof. Franz Pfeiffer, Chair for Biomedical Physics at TUM, leads a group of X-ray scientists pioneering new imaging techniques that reveal striking details in soft tissue that have been difficult to detect using conventional methods. He's eager to see the new X-ray source put to use.

"The field of X-ray imaging is evolving rapidly, and with this novel source, we are adding a powerful tool to our facility," Dr. Pfeiffer said. "I expect having our own CLS here in Munich will significantly boost the research projects in our excellence cluster Munich-Centre for Advanced Photonics (MAP)."

Lyncean has been collaborating with Dr. Pfeiffer's group informally since 2007, when an impromptu visit one afternoon led to an experiment and later publication that was featured on the cover of the Journal of Synchrotron Radiation in January 2009, [doi:10.1107/S090904950803464X]. Subsequent experiments using the CLS prototype operating at Lyncean have produced a variety of joint publications, primarily with a medical emphasis, highlighting the machine's ability to improve tumor detection and early diagnosis of lung disease (a study that was just published in the Proceedings of the National Academy of Sciences [doi: 10.1073/pnas.1206684109]).

"Because the CLS is a new breed of X-ray source, with unique properties, we work with X-ray scientists to understand their applications," Dr. Ruth said. "The TUM collaboration is a good example of how we can successfully adapt our source for a particular application, in this case biomedical imaging."

The US National Institutes of Health provided funding for CLS development in order to help address the growing demand of life-science users who rely on synchrotrons for structural biology research. In addition to the CLS, Lyncean has also developed X-ray applications such as protein crystallography and power diffraction using focused beams from special X-ray optics. Researchers, though, use a wide variety of experimental techniques when applying synchrotron radiation to their own problems. The CLS, like a large synchrotron facility, is designed to perform a breadth of X-ray applications spanning fields from biology and chemistry to nanotechnology and materials science.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!