Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Lyncean Technologies Inc. Sells Compact Light Source to Munich Biomedical-Imaging Research Center

Published: Tuesday, February 12, 2013
Last Updated: Tuesday, February 12, 2013
Bookmark and Share
Palo Alto-based Lyncean Technologies, Inc., announced its first sale of a Compact Light Source, a miniature synchrotron X-ray source employing state-of-the-art laser-beam and electron-beam technology.

A Lyncean "Compact Light Source" (CLS) was purchased by researchers from the newly-formed Center for Advanced Laser Applications (CALA) in Germany, a joint project of the Ludwig Maximilians University of Munich (LMU) and the Technical University Munich (TUM). The device will be fully built and tested in Lyncean's facility in Palo Alto, Calif. and delivered to Munich in early 2014.

"Today is a milestone for us," said Ronald Ruth, Lyncean's founder and Chairman of the Board. "We feel we have an innovative tool, especially as X-rays are playing a growing role in areas like structural biology, medical science, nanotech and fuel cell research. We've been fortunate to have had so much support developing the technology, but putting a CLS in the hands of scientists has always been the ultimate goal."

With its first sale to a team of researchers, Lyncean expects a growing demand by scientists and students at the forefront of biomedical X-ray imaging research. Prof. Franz Pfeiffer, Chair for Biomedical Physics at TUM, leads a group of X-ray scientists pioneering new imaging techniques that reveal striking details in soft tissue that have been difficult to detect using conventional methods. He's eager to see the new X-ray source put to use.

"The field of X-ray imaging is evolving rapidly, and with this novel source, we are adding a powerful tool to our facility," Dr. Pfeiffer said. "I expect having our own CLS here in Munich will significantly boost the research projects in our excellence cluster Munich-Centre for Advanced Photonics (MAP)."

Lyncean has been collaborating with Dr. Pfeiffer's group informally since 2007, when an impromptu visit one afternoon led to an experiment and later publication that was featured on the cover of the Journal of Synchrotron Radiation in January 2009, [doi:10.1107/S090904950803464X]. Subsequent experiments using the CLS prototype operating at Lyncean have produced a variety of joint publications, primarily with a medical emphasis, highlighting the machine's ability to improve tumor detection and early diagnosis of lung disease (a study that was just published in the Proceedings of the National Academy of Sciences [doi: 10.1073/pnas.1206684109]).

"Because the CLS is a new breed of X-ray source, with unique properties, we work with X-ray scientists to understand their applications," Dr. Ruth said. "The TUM collaboration is a good example of how we can successfully adapt our source for a particular application, in this case biomedical imaging."

The US National Institutes of Health provided funding for CLS development in order to help address the growing demand of life-science users who rely on synchrotrons for structural biology research. In addition to the CLS, Lyncean has also developed X-ray applications such as protein crystallography and power diffraction using focused beams from special X-ray optics. Researchers, though, use a wide variety of experimental techniques when applying synchrotron radiation to their own problems. The CLS, like a large synchrotron facility, is designed to perform a breadth of X-ray applications spanning fields from biology and chemistry to nanotechnology and materials science.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Air Pollution Linked to Heart Disease
10-year project revealed air pollutants accelerate plaque build-up in arteries to the heart.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Following Tricky Triclosan
Antibacterial product flows through streams, crops.
Vitamin A May Help Improve Pancreatic Cancer Chemotherapy
The addition of high doses of a form of vitamin A could help make chemotherapy more successful in treating pancreatic cancer, according to an early study by Queen Mary University of London (QMUL).
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!