Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Iron in New Maize Strain gets Absorbed More Readily

Published: Friday, February 15, 2013
Last Updated: Friday, February 15, 2013
Bookmark and Share
Researchers have developed a strain of maize with a high iron bioavailability, meaning more of the iron that is present naturally in these maize lines can be absorbed.

The researchers, all from the U.S. Department of Agriculture - Agricultural Research Service's Robert Holley Center on the Cornell campus, tested more than 100 maize strains for differences in iron bioavailability. They did this by introducing simulated digestions of the individual maize strains to cultured human intestinal cells and measuring the iron bioavailability. Using a technique known as quantitative trait loci (QTL) mapping, they correlated this measure with areas of the maize genome, which helped guide the maize breeding.

Iron deficiency is the most prevalent nutritional deficiency and cause of anemia in the world. Although boosting the nutritional quality of iron in staple food crops can help, increasing iron concentrations in the crop does not guarantee increased iron absorption.

"We had two options: to increase the concentration or to increase the bioavailability. Our maize breeder, Dr. Owen Hoekenga [a Cornell molecular biologist], chose to select for iron bioavailability as these regions appeared more easy to isolate," said food scientist Elad Tako, lead author of the study, which was published in the January issue of Nutrition Journal (12:20).

The results were validated by feeding the new maize, which harbored three QTLs predicted to promote iron bioavailability, to chickens. A diet of maize with high iron bioavailability maintained the iron status of chickens, but chickens fed the low bioavailable iron maize became anemic.

"While the up-front cost of improving the iron quality of staple foods is high, the cost of maintaining them is likely less and thus very sustainable," said food scientist Raymond Glahn, the senior author of the study.

As part of the study, the researchers developed techniques to test the results of the cell culture assay in a live animal -- in this case, the broiler chicken. Such a model is "cost-effective, easy to handle, sensitive to dietary mineral deficiencies, including iron, and could consume the broad range of staple crops that we plan to test," said Tako.

In the future, the researchers hope to identify QTLs that govern the availability of other vital nutrients in crops. "We have done a lot with beans, lentils, sorghum, wheat -- looking into factors that can affect the bioavailability of iron, but we are also interested in zinc bioavailability," said Tako.

"Biofortification of grains with iron and zinc not only gives better nutrition for the consumers but it's also an incentive for the farmers because they promote crop yield. Without that feature, the farmers wouldn't adopt it," said Glahn.

The World Health Organization reports that almost a quarter of the world's population is anemic, with prevalence rates at almost 70 percent in African countries, where maize is an integral part of the diet. "The ultimate game is to take this to an area where the population is iron-deficient," said Glahn, in hopes of curbing anemia.

However, "large-scale feeding studies in humans can be costly ... So before we can plan such a study, we must confirm that our enhanced maize can provide more bioavailable iron to humans. This will involve human volunteers … and would likely be performed here on the Cornell campus," said Glahn.

Plant biologist Leon Kochian was also a co-author of the study, which was funded by the USDA. All the co-authors also have courtesy academic appointments at Cornell.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
Wednesday, June 29, 2016
Pathogen Takes Control of Gypsy Moth Populations
A new fungal pathogen is killing gypsy moth caterpillars and crowding out communities of pathogens and parasites that previously destroyed these moth pests.
Tuesday, April 26, 2016
Eating Green Could be in Your Genes
Genetic variation uncovered that has evolved in populations that have historically favored vegetarian diets, such as in India, Africa and parts of East Asia.
Friday, April 01, 2016
$4.8M USAID Grant to Improve Food Security
To strengthen capacity to develop and disseminate genetically engineered eggplant in Bangladesh and the Philippines, the USAID has awarded Cornell a $4.8 million, three-year cooperative grant.
Friday, April 01, 2016
Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Friday, January 15, 2016
Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
Synthetic Immune Organ Produces Antibodies
Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism.
Friday, June 12, 2015
On Planes, Savory Tomato Becomes Favored Flavor
Study shows the effect that airplane noise has on passengers' taste preferences.
Friday, May 15, 2015
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
'Shield' Gives Tricky Proteins a New Identity
Solubilization of Integral Membrane Proteins with high Levels of Expression.
Saturday, April 11, 2015
DNA Safeguard May Be Key In Cancer Treatment
Cornell researchers have developed a new technique to understand the actions of key proteins required for cancer cells to proliferate.
Monday, March 09, 2015
A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
Bacteria Be Gone!
New technology keeps bacteria from sticking to surfaces.
Monday, January 19, 2015
On the Environmental Trail of Food Pathogens
Learning where Listeria dwells can aid the search for other food pathogens.
Tuesday, December 23, 2014
Chemists Show That ALS is a Protein Aggregation Disease
Using a technique that illuminates subtle changes in individual proteins, chemistry researchers at Cornell have uncovered new insight into the underlying causes of Amyotrophic Lateral Sclerosis (ALS).
Thursday, October 23, 2014
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
Antibodies To Dengue May Alter Course Of Zika Virus Infection
Scientists at Emory Vaccine Center, in collaboration with investigators from Thailand, have found that people infected with dengue virus develop antibodies that cross-react with Zika virus.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!