Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

One-Two Punch Strategy Against Bacteria and Cancer

Published: Monday, February 18, 2013
Last Updated: Monday, February 18, 2013
Bookmark and Share
Combining synthetic, natural toxins could disarm cancer, drug-resistant bacteria.

Cancer researchers from Rice University suggest that a new man-made drug that’s already proven effective at killing cancer and drug-resistant bacteria could best deliver its knockout blow when used in combination with drugs made from naturally occurring toxins.

“One of the oldest tricks in fighting is the one-two punch — you distract your opponent with one attack and deliver a knockout blow with another,” said José Onuchic of Rice’s Center for Theoretical Biological Physics (CTBP). “Combinatorial drug therapies employ that strategy at a cellular level.

“A wealth of research in recent years has shown that both cancer and bacteria can mount sophisticated, coordinated defenses against almost any drug,” said Onuchic, Rice’s Harry C. and Olga K. Wiess Professor of Physics and Astronomy, professor of chemistry, and biochemistry and cell biology. “By combining drugs, particularly those that place stress on different parts of the cell, we expect it will be possible to knock out either cancer cells or bacteria while simultaneously inhibiting their ability to become drug-resistant.”

Onuchic and CTBP colleagues Eshel Ben-Jacob and Patricia Jennings reached their conclusions after analyzing several studies on anti-microbial peptides (AMPs), corkscrew-shaped chains of amino acids that kill Gram-negative bacteria. The CTBP team’s ideas appear this week in the Proceedings of the National Academy of Sciences (PNAS) as a commentary on new findings from MD Anderson Cancer Center about a promising synthetic AMP called D-KLAKLAK-2. In its new research, MD Anderson researchers found D-KLAKLAK-2, which was already known to kill cancer cells, is also an effective drug against antibiotic-resistant Gram-negative bacteria.

“AMPs are produced naturally by a number of animals to fight bacteria,” said Ben-Jacob, professor of biochemistry and cell biology at Rice and the Maguy-Glass Chair in Physics of Complex Systems and professor of physics and astronomy at Tel Aviv University. “AMPs are corkscrew-shaped. They do not harm the animals’ own cells, but they penetrate and shred the double-layered membranes of Gram-negative bacteria.”

Gram-negative bacteria are a class of pathogens that includes drug-resistant varieties of bacteria that cause pneumonia, sepsis and other deadly diseases.

Ben-Jacob said cancer researchers have previously shown that they can tag AMPs with special “marker” molecules that allow the AMPs to penetrate and kill cancer cells. The markers allow the AMPs to be taken inside the cancer cells, something they cannot normally do.

“Once inside the cancer cells, the AMPs target and damage the cell’s power plant, an organelle called the mitochondria, which has a double-layered membrane that is remarkably similar to that of Gram-negative bacteria,” he said.

Though research has shown that AMPs can kill cancer cells, scientists are concerned that cancer cells could develop resistance to the compounds. In part, this concern arises from the fact that AMPs are fairly common in nature and that some organisms already have genetic mutations that allow them to evade AMP attacks.

To circumvent these natural defenses, MD Anderson researchers Wadih Arap and Renata Pasqualini led an effort a few years ago to create a synthetic version of a natural corkscrew-shaped AMP called KLAKLAK-2. Like all naturally occurring AMPs, KLAKLAK-2 has a left-handed twist — much like the threads of a screw that turn clockwise. To make the molecule more difficult for cancer cells to fight, the MD Anderson team built a right-handed, “counterclockwise” version of the molecule called D-KLAKLAK-2, with the “D” denoting right-handedness. In its most recent studies, which also appear this week in PNAS, the MD Anderson team found that D-KLAKLAK-2 is an effective killer of Gram-negative bacterial pathogens, including several types that have grown resistant to traditional antibiotics.

“Bacteria are notorious for their rapid development of drug resistance,” Ben-Jacob said. “However, both bacteria and cancer have impaired ability to resist these man-made ‘mirror’ compounds because they cannot use the machinery they have evolved to disarm the right-handed weapons.”

Onuchic said another advantage of therapies involving synthetic AMPs like D-KLAKLAK-2 is that the drugs can be administered in extremely small doses, which will reduce side effects.

The Rice team suggests maximizing the benefits of synthetic AMPs by using them in drug cocktails that act like a one-two punch for either bacteria or cancer.

Naturally occurring AMPs are chemical weapons that bacteria themselves have developed over millions of years in their never-ending war among themselves. The team reasons that combining these natural toxins with man-made mirror drugs will create the drug equivalent of a one-two punch. The combination should “confuse” bacteria and cancer and prevent them from rapidly becoming resistant to the man-made drugs.

“Nature is smarter than we are,” Ben-Jacob said. “Time and again, we have seen that seemingly simple cellular foes like bacteria and cancer can learn to mount effective defenses against any new drug we create. It is time to accept them as sophisticated enemies. We should attack them in much the same way that a well-trained boxer or military commander would go after a wily opponent — with multiple, coordinated blows of very different kinds.”

Jennings is professor of chemistry and biochemistry at the University of California, San Diego. Research at CTBP is supported by the National Science Foundation and by the Cancer Prevention and Research Institute of Texas.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genes that Reduce Sarcomas Aggressiveness Identified
Scientists have identified genes that make sarcoma cells less agressive.
Tuesday, September 20, 2016
Worms Point Way Toward Viral Strategies
Rice University wins NIH grant to study how nematodes handle gastrointestinal viruses.
Wednesday, August 31, 2016
‘Missing Tooth’ Hydrogels Handle Hard-to-Deliver Drugs
Rice University’s custom hydrogel traps water-avoiding molecules for slow delivery.
Wednesday, June 08, 2016
New Cancer Fighters Emerge From Lab
Rice University lab simplifies total synthesis of anti-cancer agent.
Wednesday, May 25, 2016
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Friday, May 20, 2016
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
Wednesday, May 04, 2016
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
Wednesday, May 04, 2016
Magnetic Nanoparticles May Reveal Early Traces Of Cancer
Rice University students’ computer program aids MD Anderson diagnostic initiative .
Friday, April 29, 2016
Rare DNA Will Have Nowhere To Hide
Two National Institutes of Health grants back Rice University effort to develop new diagnostics.
Friday, April 08, 2016
Scientists Synthesize Anti-Cancer Agent
A team led by Rice University synthetic organic chemist K.C. Nicolaou has developed a new process for the synthesis of a series of potent anti-cancer agents originally found in bacteria.
Monday, March 14, 2016
‘Big Data’ Drills Down Into Metabolic Details
Rice University bioengineers introduce efficient way to analyze, compare tissue-specific pathways.
Monday, March 14, 2016
Cancer Cells’ Evasive Action Revealed
Rice, MD Anderson scientists analyze suppression of proteins key to immune recognition.
Friday, March 04, 2016
DNA Analysis in the Fast Lane
Rice bioengineers' method should lead to better database of thermal behaviors.
Thursday, January 21, 2016
Bacteria Attack Lignin with Enzymatic Tag Team
Team from Rice, University of Wisconsin-Madison shows how nature handles lignin.
Tuesday, January 12, 2016
Obstacles Not Always a Hindrance to Proteins
Rice researchers’ theory finds blocked path sometimes speeds DNA sequence search.
Friday, December 11, 2015
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
A Diversity of Genomes
New DNA from understudied groups reveals modern genetic variation, ancient population shifts.
“Sixth Sense” May Be More Than Just A Feeling
The NIH Study shows that two young patients with a mutation in the PIEZ02 have problems with touch and proprioception, or body awareness.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Biomolecular Manufacturing ‘On-the-Go’
Wyss Institute team unveils a low-cost, portable method to manufacture biomolecules for a wide range of vaccines, other therapies as well as diagnostics.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!